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Introduction

Image acquisition model

@ ideal image u:R2 - [0,00)
e Measurements i:7?—1[0,255|NZ

i = g(Azz((uo @) x h+n))

Geometric deformation ¢
blur kernel h

contrast change g

Simplified model

x = Agzno )2 (U * sinc) (ideal discrete image x € RNz)

x=A()+n (degraded measurements)
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Bayesian & Variational Methods

Recall (previous course)

Simplified model

o x = Ay sy (U *sinc) (ideal discrete image x € R")

o X=A(x)+n (degraded measurements)

[ll-posed A = need for regularization (prior knowledge)

o risk minimization (MMSE): miny E [||X —x|2| X = i}

@ posterior maximisation (MAP) maxy P [X =X

Special case n ~ N(0,02) and x ~ N(u,X) are Gaussian

Both MMSE & MAP lead to the same closed form (Wiener filter):
R = (A*A+ o?T )Y AR + 02 1)

WANING!! This is a very special case !!

Andrés ALMANSA, Said LADJAL, Alasdair NEWSON Lecture # 3: Plug & play methods



Bayesian & Variational Methods

Neural Networks for inverse problems: Two paradigms

@ Learning-based approach : find a sufficient number of image
pairs (x',%') and train a neural network f; to invert A by
minimizing the empirical risk >, [|f(%") — x||3

no need to model A, n nor prior for x
X needs retraining if A or n change
@ Bayesian approach : Model separately

© conditional probability P [x —% ‘ X = x]

(using physical model, calibration)
@ prior model P[X =] (through NN learning)
© Use Bayes theorem to estimate x via MAP or MMSE
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Bayesian & Variational Methods

Example of MAP estimation :

@ Observation model:
$ _ 3 — ] = — (% — Ce rzlF=AMI3
P{Xfx’Xfx}fIP[Nf(x—A(x))]fCe 202 :
e Prior model P[X = x] = C’e *R()

o Posterior: —logP [X = x ‘ X =] = E(x) =

1
553118 = ARIZ +AR(x) + C”

F(x)
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Bayesian & Variational Methods

Choosing a prior for the clean image x

e Tikhonov regularization: (convex, smooth)
2
R(x) =Y _IIVxil3
i
@ Total Variation regularization: (convex, non-smooth)

RE) = 3192

e Wavelet shrinkage: (convex, non-smooth)
R(x) = [[Wx]|1

e Patch based regularization (EPLL):  (non-convex, smooth)
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Bayesian & Variational Methods

Choosing a prior for the clean image x

e Tikhonov regularization: (convex, smooth)
2
=1Vl
i
@ Total Variation regularization: (convex, non-smooth)

= leVXillz

e Wavelet shrinkage: (convex, non-smooth)
R(x) = [IWx|1

) =
e Patch based regularization (EPLL):  (non-convex, smooth)
@ Neural network to learn R(x) ?
difficult to train !
properties of R ? (we need to minimise F(x) + AR(x) !
@ Indirect (Plug & Play) approach :
e Train a neural network to solve a simpler (denoising) problem:
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Bayesian & Variational Methods

Choosing a prior for the clean image x

@ Indirect (Plug & Play) approach :

e Train a neural network to solve a simpler (denoising) problem:
D, : % in 1 %12+ R
o2 X — argmin EHX—XHQ—F (x)

o D, = prox,.p is the proximal operator of the regularizer
e Use D, to regularize the original problem
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Bayesian & Variational Methods

Plug & Play approach

A myriad of solutions have been proposed:
@ RED - Regularization by Denoising [Ronvano, Erap &
MILANFAR 2017; REEHORST & SCHNITTER 2018]
e HQS - Half Quadratic Splitting [Crvan & YanG 2002; ZORAN &
WEISS 2012]
@ ADMM - Alternated Direction Method of Multipliers [Bovp

2010; CHAN ET AL 2017]

@ Chambolle-Pock method [CramBoLLE & Pock 2011-2016,

MEINHARDT ET AL 2017]

Does the scheme converge?

@ Does there exist a regularizer R such that prox,2g = D7
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RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
Plug & Play methods ADMM - Alternate Direction Method of Multipliers

RED - Regularisation by Denoising

RED constructs an explicit regularizer from a denoiser:

Lk x - Dy (x))

Rrep(x) = >

Theorem (RED's gradient

If the denoiser D, :
e is locally homogeneous (i.e. (14 ¢)D,(x) = D,((1+¢)x)) and
@ has symmetric Jacobian

then Rgrep's gradient is writes V Rrep(x) = x — Dy(x)
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RED - Regularisation by Denoising

Rrep(x) = =(x,x — Dy(x))

Theorem (RED's gradient

If the denoiser D, :
e is locally homogeneous (i.e. (14 ¢)D,(x) = D,((1+¢)x)) and
@ has symmetric Jacobian

then Rgrep's gradient is writes V Rrep(x) = x — Dy(x)

Collorary A gradient descent scheme (without splitting) is easy to
implement:
VE(x) = (VF + Id — D,)(x)
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RED - Regularisation by Denoising

Rrep(x) = %(x, x — D, (x))

Theorem (RED's gradient

If the denoiser D, :
e is locally homogeneous (i.e. (14 ¢)D,(x) = D,((1+¢)x)) and
@ has symmetric Jacobian

then Rgrep's gradient is writes V Rrep(x) = x — Dy(x)

Lemma 1: If the denoiser D is locally homogeneous then [Jr(x)]x = D(x)
Lemma 2: Rgep's gradient is VR(x) = x — 0.5D,(x) — 0.5[Jr(x)] "x

Lemma 3: If the denoiser D is locally homogeneous and has symmetric
Jacobian then VRgep(x) = x — D(x)
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RED - Regularisation by Denoising
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RED - Regularisation by Denoising

Rrep(x) = %(x, x — D,(x))

Theorem (RED's gradient

If the denoiser D, :
e is locally homogeneous (i.e. (14 ¢)Ds(x) = D,((1+¢)x)) and

@ has symmetric Jacobian

then Rrep's gradient is writes V Rrep(x) = x — Dy (x)

Reality check

| [ TOT | MF | NLM | BM3D | TNRD | DnCNN |
|l Jr — _/fTH%__ [[ef(@) ][ 536e21 | 150 [ 0.250 [ 122 | 00378 | 0.0172 ]

J _
& = 1 H2 TABLE 1
f F AVERAGE JACOBIAN-SYMMETRY ERROR ON 16X 16 IMAGES
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RED - Regularisation by Denoising
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HQS - Half Quadratic Splitting

Instead of minimizing the original problem

E(x) = F(x) + AR(x)

we introduce an auxiliary variable v and we aim at solving the
equivalent constrained minimization problem :

min F(x) + AR(v) under the constraint x = v

X,V
The constraint can be added back to the energy (preceded by a
Lagrange multiplier 3)

Ev(x,v, 8) = F(x) + B]x — vI> + AR(v)

We know that for 5 large enough joint minimization of Ej is
equivalent to minimizing E.
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RED - Regularisation by Denoising
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HQS - Half Quadratic Splitting

Ex(x,v, B) = F(x) + Blx — v[* + AR(v)
To ensure that § is large enough we can use a continuation scheme:

argmin E(x) = lim arg minmin Ey(x, v, )
X B—o0 X v

Which inspires this alternating a minimization algorithm:

Initialization: x%,v®, 3% > 0,7 >0

For k=1, ... until convergence

xk = arg min, Ey(x,vk71, By _1). // inverse problem
vk = argmin, E;(x, v, Bk_1). // regularization
Bk =Bt

End for

This method (which was proposed by [Grvan & Yanc (2002)]) was
notably used by [Zoran & Wriss (2012)] to optimize their EPLL method.

©0 0000
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HQS Plug & Play

The fourth step in the HQS method ...
Q@ vk = argmin, E;(x¥,v) = arg min, Bk||x¥ — v||2 + R(v)
. can be interpreted as a denoising of x* with noise variance o7 = 1/(23%)

Replace step 4 by a trained denoiser D, :
@ Initialization: x°,v0, 50
@ For k=1, ... until convergence
@ x¥ = argminy E1(x,vk™1). (inverse problem)
Q vk = D,, (x¥). (regularization)
Q Bk =651
@ End for

Obs 1: In this scheme the denoiser needs to be trained for several values of o
Obs 2: The convergence of the P&P HQS method has not been established.

We refer to it here as an historical introduction.
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Method of Multipliers

The HQS method requires § to increase during the iterations.

A more proper method which can ensure convergence with a fixed parameter is
the method of multipliers, which introduces a Lagrange multiplier w; for each
constraint x; = v;:

Ex(x,v,u) = F(x) +u’ (x —v) + AR(v)
We can show that
arg min min max E(x, v, u) = arg min E(x)
X v u X

This results in the following algorithm
@ Initialization: x,v%,u® a > 0,

@ For k=1, ... until convergence

Q@ x¥ = argminy Ex(x, vk~ uk1). // inverse problem
Q@ vK = argminy Ex(x*,v,uf71). // regularization
Q@ uk =uf1 4 a(xk —vk) // gradient ascent on multiplier
@ End for
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ADMM - unscaled version

A more flexible version of this algorithm can be constructed, which:

@ has milder conditions on D and R

@ converges faster
It is obtained by adding the £ norm of the constraint to build the augmented
Lagrangian:

Es(x,v,u) = F(x) +u” (x = v) + AR(v) + £ ]x — v|]

The corrresponding alternated optimization (where a = p is the unscaled
version of ADMM:

@ Initialization: x°,v% u® p >0,
@ For k=1, ... until convergence
@ x¥ = argminy E3(x,vk1 uk1). // inverse problem
Q@ vk = argminy E3(x*,v,uf"1). // regularization
Q@ uf = uF 4 p(xk —vk) // gradient ascent on multiplier

@ End for
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ADMM - scaled version

ADMM is often written in a more convenient way as follows:
Defining the residual of the constraint as r = x — v
the " constraint” part of the Lagrangian can be rewritten

T P P 2_i 2_ P —2 _ Py=2
u'r+ Hrll Slr+ || 2p||u||—2||r+UH > Il

where u := %u is the scaled muItipIier

With this modification the scaled ADMM that results from minimizing
Es(x,v,0) = F(x) 4 pu’ (x — v) + AR(v) + ng —v|?

and the algorithm becomes:

@ Initialization: x°,v%, u p > 0,

@ For k=1, ... until convergence

Q@ xK = argminy E4(x, vk, uk1). // inverse problem
Q@ vk = argmin, E4(x v,uk ). // regularization
Q@ vk =uk14 (xk - vk) : // gradient ascent on multiplier
@ End for
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ADMM - scaled version

ADMM is often written in a more convenient way as follows:
Defining the residual of the constraint as r = x — v
the " constraint” part of the Lagrangian can be rewritten

T P
u r+2|\

P 1 P _ P
rl* = || IIZ—*IIUI|2: §||r+l1|\2—§||llll2

2p

where u := %u is the scaled multiplier

With this modification the scaled ADMM that results from minimizing
Ea(x,v, ) = F(x) + AR(v) + 5|x — v + a2 — Zjal?

or expanding the two minimization steps:

@ Initialization: x°,v%, @, p >0,

@ For k=1, ... until convergence

@ x* =argming F(x) + &]x — (V""" —@*"")||>. // prox on inverse problem
Q vk =argmin, AR(V) + £||(x* +u*) —v|]>.  // prox on regularization
Q v =u"1 4 (xF—vh). // gradient ascent on multiplier
@ End for
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Plug & Play ADMM

As in the HQS case, step 4 in this algorithm is substituted by a NN-based
denoiser that was trained independently of this problem.
Instead of:

Q vk =argmin, AR(V) + £[|(x* +T* 1) — v|2.
we write:

Q vk =D, (x +u ).
where 0 = \/\/p

Theorem (Plug & Play ADMM

If D, is differentiable and its Jacobian Jp_ is symmetric with
eigenvalues in [0, 1], plus some mild technical conditions, then:

@ D, is the proximal operator of some energy function R.

@ Plug & Play ADMM converges to the global infimum of F(x)+ R(x)
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Plug & Play ADMM

Theorem (Plug & Play ADMM

If D, is differentiable and its Jacobian Jp, is symmetric with
eigenvalues in [0, 1], plus some mild technical conditions, then:

@ D, is the proximal operator of some energy function R.

® Plug & Play ADMM converges to the global infimum of F(x)+ R(x)

The proof of this result is based on a result of [Morrav 1965]:

A denoiser D is the proximal operator of an energy R, iff

5, and

@ D is non-expansive ||D(x) — D(v)|]2 < ||x — v|

@ there exists ¢ such that D(x) € dp(x)

Non-expansiveness results from the eigenvalue condition. And the
existence of ¢ from the symmetric Jacobian and Green's theorem.
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Plug & Play ADMM (bounded denoisers)

A slight variation of the P&P-ADMM algorithm allows it to converge
under more reasonable conditions.
The modification is similar to the continuation scheme used for HQS:

@ Initialization: x%, v, %, p° > 0,n < 1,7y > 1
@ For k=1, ... until convergence
© x* = argmin, F(x) + &]x — (vk—t —a*1)||2.
// proximal descent on inverse problem
Q vk = D «(x + ") where 0¥ A/ pk-1
Q v =u"1 + (xk—vh). // gradient ascent on multiplier
Q If Ay > nAi_1 then pk = ypk—t
@ Else pk = pk-1
Q End if
© End for
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Plug & Play ADMM convergence for bounded denoisers

Theorem ( )
@ HI: If F has bounded gradients, and

@ H2: D, is bounded ( there exists C > 0 such that for any image
x € RN LD, (x) - x| < 02C)

Then the iterates 6% = (x, vk, u*) of Plug & Play ADMM converge to a
fixed point in ¢ norm.

The convergence proof proceeds by showing that 0¥ = (x*, vk uk) is a

Cauchy sequence by showing that

D(9k+1,9k) < Cék

for some C >0 and § € (0,1)

This is trivial in case 1 (else case when Ay < nAk_1).

Otherwise the update rule px+1 = vpx and boundedness of the denoiser
play an important role:

Indeed o < y~1/26%=1 and therefore || Dy« (xk +u*~1) — (xk +a*~1))|
also decreases because |t is bounded.
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Conclusion

e HQS works for EPLL

@ RED requires locally homogeneous denoiser with symmetric
Jacobian (Wavelet Thresholding, Graph-Laplacian-based
denoisers)

o Plug & Play ADMM (fixed p) requires non-expansive denoiser
(Wavelet Thresholding)

e Plug & Play ADMM (adaptive p) requires bounded denoiser

(any denoser can be modified to satisfy this condition.
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