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Introduction

Neural networks are often used for :

Classification/detection (MLPs, CNNs)
Modelling time-series, sequences (RNNs)

All of these networks rely on the extraction of features to analyse data

Idea : the network’s internal representation of the data can be useful !

Autoencoders and more generally generative models use this idea
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Introduction

What do you think of these faces ?

These are all generated by a generative model ! !

In the next two lessons, we are going to see how this is possible
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Autoencoders
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Autoencoders

Autoencoders consist of two networks : an encoder and a decoder
Encoder : map data x to a smaller latent space
Decoder : map point z back from latent space to original data space

Main idea : the latent space is a space where it is easier to
manipulate/understand data

More powerful and compact representation of data

Encoder Decoder

Autoencoder
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Autoencoders

The autoencoder is trained to minimise some norm between the input
x and the output y of the decoder

In almost all cases, we have d << mn

This forces the autoencoder to learn a compact and powerful latent
space

Encoder Decoder
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Autoencoders

Uses of autoencoders :

Data compression, dimensionality reduction

Classification (easier in latent space)

Data generation/synthesis

Encoder Decoder
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Autoencoders - some notation

An AE is a neural network consisting of two sub-networks

The encoder Φe,

Φe : Rmn → Rd

x 7→ Φe(x) = z

The decoder Φd,

Φd : Rd → Rmn

z 7→ Φd(z) = y

As in other neural networks, the main components of AEs are
mlp’s/convolutions, biases and non-linearities
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Autoencoders

The autoencoder is trained to reproduce the input x as an output y, in
the sense of some norm, having gone through the bottleneck of the
network

The norm most often used is the sum of squared differences (`2-norm)

Autoencoding training minimisation problem

L(x) = ‖y − x‖22

=
m∑
i

n∑
j

(
(Φd ◦ Φe(x))i,j − xi,j

)2

Put simply : output should look like input !
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Autoencoders - upsampling

Most often, the autoencoder uses convolutions

A key question is how to create the bottleneck : downsampling

We know how to downsample :

Strided convolutions
Max pooling

How about upsampling ?

Alasdair Newson Deep Learning 12
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Autoencoders - upsampling

Upsampling can be carried out in several ways :

Simple interpolation (linear, bilinear, bicubic)
Transposed convolution

Transposed convolution is probably the most common upsampling

Simultaneously upsamples and “convolves”

Let’s take a look at how this works

Alasdair Newson Deep Learning 13
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Autoencoders - transposed convolution

Recall that we can write the convolution as a matrix/vector
multiplication (see lecture on CNNs)

For example, take the convolution with the Laplacian operator

w =

 0 −1 0
−1 4 −1

0 −1 0

 → Aw =



4 −1
0· · · −1

0· · ·
−1 4 −1

0· · · −1
0· · ·

0 −1 4 −1
0· · · −1

0· · ·
. . .

. . .
. . .

. . .
. . .

. . .
0· · · −1

0· · · −1 4



To carry out convolution + stride with subsampling s, we just remove
certain rows from the matrix Aw (the elements not retained during
subsampling)
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Autoencoders - transposed convolution

Aw,s =


4 −1

0· · · −1
0· · ·

− 1 4 −1
0· · · −1

0· · ·
. . .

. . .
. . .

. . .
. . .

. . .
0· · · −1

0· · · −1 4



Aw now becomes a mn
s ×mn matrix Aw,s

Transposed convolution just consists of ATw,s
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Autoencoders - transposed convolution

Let’s take a concrete example :
We wish to upsample a 1D signal x of size 2 to size 4
Convolutional filter w = [1, 2, 1]

T

First, we look at the convolution matrix at the higher resolution signal
size 4

Aw =


2 1 0 0
1 2 1 1
0 1 2 0
0 0 1 2


Therefore, we have :

Aw,s =

(
2 1 0 0
0 1 2 0

)
ATw,s =


20
11
02
00


Alasdair Newson Deep Learning 16
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Autoencoders

A generic autoencoder architecture

Convolution

Bias
Non-linearity

Subsampling

Convolution

Bias
Non-linearity

Upsampling

Convolution

Bias
Non-linearity

Subsampling
Convolution

Bias
Non-linearity

Subsampling
Convolution

Bias
Non-linearity

Subsampling

Convolution

Bias
Non-linearity

Upsampling
Convolution

Bias
Non-linearity

Upsampling
Convolution

Bias
Non-linearity

Upsampling

d << m ∗ n
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Autoencoder variants

Autoencoders come in many flavours, differ mainly by their loss
functions

Naive autoencoder loss L can lead to certain problems

Overfitting to data, poor robustness
Latent space difficult to interpret, not necessarily meaingful w.r.t data
space

As is often the case in deep learning, this can be addressed using
regularisation

In practice, this means adding extra terms to L

Alasdair Newson Deep Learning 18
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Denoising autoencoder

First example : the denoising autoencoder

We would like to make the encoder/decoder robust to small
perturbations in the input data

One solution : the denoising autoencoder

Denoising autoencoder

Idea : add noise η to the input

L(x) = ‖Φd ◦ Φe(x+ η)− x‖22

Low-dimension 
space of true data

Alasdair Newson Deep Learning 19
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Sparse autoencoder

Ideally, we want the code to be as sparse as possible

Why ? We want the smallest vector which accurately describes the
data

Combinations of elements more difficult to interpret
Useful for classification

Sparse autoencoder

L(x) = ‖Φd ◦ Φe(x)− x‖22 + λ‖z‖1

The ‖z‖1 norm encourages sparsity in z

Alasdair Newson Deep Learning 20
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Contractive autoencoder

Another approach to regularisation : contractive autoencoder

Close points in data space map to close points in latent space (thus,
contractive)

Encoding

Close points map to close points

How can we impose this ?

∂zj
∂xi

should be small, for all couples (i, j)
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Contractive autoencoder

Contractive autoencoder

Add the Frobenius (`2) norm of the Jacobian of z w.r.t. x, Jxz, to the cost function

L(x) = ‖Φd ◦ Φe(x)− x‖22 + λ‖JxE(x)‖2F
= ‖Φd ◦ Φe(x)− x‖22 + λ‖Jxz‖2F

Reminder, Jacobian : Jx(z) =


∂z1
∂x1

. . . ∂z1
∂xmn

...
. . .

...
∂zd
∂x1

. . . ∂zd
∂xmn



Encoding

Close points map to close points
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Autoencoders - summary

Important points to remember

Autoencoder consists of two networks : encoder and decoder

These compress to and from a smaller dimension latent space

This latent space represents data more powerfully and compactly

Encoder Decoder
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Autoencoders

Example of autoencoder use : interpolation of complex data

Interpolation of complex data†

Alasdair Newson Deep Learning 24
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Generative models
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Generative models

In many applications, it is desirable to synthesise data

Video post-production
Data augmentation

Several types of generative models exist :

Restricted Bolzmann machines, Deep Belief models
Variational autoencoders
Generative Adversarial Networks
Texture synthesis and style transfer models

The common idea in these models is the internal representation/latent
space of the network

Alasdair Newson Deep Learning 26
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Generative models

Modern generative models produce highly realistic, (relatively)
high-definition images

Synthesis examples from “Real NVP”†

Before, we take a small detour to present Restricted Bolzmann
Machines

Alasdair Newson Deep Learning 27
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Restricted Bolzmann machines

A Restricted Bolzmann machine is a collection of binary random
variables
The variables’ probability distribution is learned during training
The variables form a bipartite graph

Restricted Bolzmann machines are used less nowadays in favour of
variational autoencoders and Generative Adversarial Networks,
which we will see now

Alasdair Newson Deep Learning 28
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Variational autoencoder

Suppose we want to produce random examples of data, how would
we go about this ?

We can model the latent space in a probabilistic manner

Synthesis will then consist of :
1 Sampling in the latent space
2 Decoding to produce the random image

Probabilistic model in latent space Synthesis of random image

Decoding

Alasdair Newson Deep Learning 29



Introduction Autoencoders Generative models Summary

Variational autoencoder
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Variational autoencoder - variational Bayesian approach

The Variational Autoencoder (VAE) encourages the latent code z to
follow a certain distribution, via the loss function

This is in turn achieved by using a Variational Bayesian approach

The Variational Bayesian approach is a methodology to approximate
the posterior distribution of unobserved variables in graphical models

We will need some tools from statistics : conditional probability, Bayes
theorem, marginal distributions, distribution divergences ...

Keep in mind that the main goal here is to choose a loss function
which will encourage the latent space to follow a probability
distribution

Alasdair Newson Deep Learning 31
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Variational autoencoder - variational Bayesian approach

Let’s take an example. Suppose we have a student A, who comes to lessons or not.
The event of A’s presence in the lesson is x. This is the observed variable

We also know that sometimes it rains, and that A’s presence in the class depends
on whether it rains or not. Let us denote the event of it raining with z. This is the
latent variable

Suppose that we do not directly know whether it is raining (we cannot look out of

the window), but can only observe whether the student A is in the lesson

Alasdair Newson Deep Learning 33
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Variational autoencoder - variational Bayesian approach

The probability of A being in the lesson, P(x), is the marginal probability

The probability of it raining P(z) is the prior probability

The probability of A being in the lesson given z, P(x|z) is the likelihood

The probability of A it raining, given x, P(z|x) is the posterior probability

Alasdair Newson Deep Learning 34
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Variational autoencoder - variational Bayesian approach

At this point, we assume that all the probabilities discussed have a
probability density function

We suppose that the distributions come from families of distrbutions
parameterised by the parameters θ (pθ(x), pθ(x|z) etc)

Likelihood

Prior

: posterior

Hidden 
variable

Observed 
variable

Alasdair Newson Deep Learning 35
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Variational autoencoder - variational Bayesian approach

There are some clear analogies with the autoencoder

Encoder : posterior pθ(z|x)

Decoder : likelihood pθ(x|z)

Encoder Decoder

We want to impose the prior pθ(z) ! !
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Variational autoencoder - variational Bayesian approach

Often, we know (or we can at least estimate) the likelihood pθ(x|z)
However, often the posterior distribution pθ(z|x) is difficult to
calculate, or intractable. Why is this the case ?

pθ(z|x) =
pθ(x|z) pθ(z)

pθ(x)
Bayes’s rule

=
pθ(x|z) pθ(z)∫
pθ(x, z)dz

Marginal distribution

∫
pθ(x, z)dz can be a very high-dimensional integral

Calculating the posterior probability is known as the inference
problem

Alasdair Newson Deep Learning 37
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Variational autoencoder - variational Bayesian approach
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Variational autoencoder - variational Bayesian approach

So, how do we approach the problem of inference ?

The variational Bayesian approach consists in using an approximate
distribution qφ(z|x) ≈ pθ(z|x), which is easier to manipulate

What does it mean for two probability distributions to be similar ?

Often, this is defined using the Kullback-Leibler divergence

Alasdair Newson Deep Learning 39
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Variational autoencoder

Kullback-Leibler divergence

Let p and q be two probability distributions defined over the same domain.
The Kullback-Leibler divergence is defined as

KL(p || q) =

∫
p(x) log

p(x)

q(x)
dx (1)

The Kullback-Leibler divergence has some interesting properties :

Non-negative : KL(p || q) ≥ 0

KL(p || q) = 0 ⇐⇒ p = q almost everywhere

Non-symmetric : KL(p || q) 6= KL(q || p)

The second point is quite important. Why ? Because we know that by
minimising the KL divergence we are necessarily forcing p and q
closer together.

Alasdair Newson Deep Learning 40
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Variational autoencoder

Kullback-Leibler divergence

Let p and q be two probability distributions defined over the same domain.
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KL(p || q) = 0 ⇐⇒ p = q almost everywhere

Non-symmetric : KL(p || q) 6= KL(q || p)

The second point is quite important. Why ? Because we know that by
minimising the KL divergence we are necessarily forcing p and q
closer together.
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Variational autoencoder

Let’s come back to variational Bayesian methods now. We wish to
approximate pθ(z|x) with qφ(z|x). To do this, we will find a qφ∗ :

q∗φ = arg min
qφ

KL (qφ(z|x) || pθ(z|x)) † (2)

Unfortunately, this does not help us much. Why ? Because we don’t
know pθ(z|x) !

We will have to minimise KL (qφ(z|x) || pθ(z|x)) some other way

Alasdair Newson Deep Learning 42
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Variational autoencoders - The evidence lower bound

Evidence of Lower BOund (ELBO, lower bound of log pθ(x))

ELBO(qφ) = Eqφ [log(pθ(x, z))]− Eqφ [log qφ(z|x)]

This is known as the “Evidence of Lower BOund” because :

log pθ(x) = ELBO(qφ) +KL(qφ(z|x) || pθ(z|x)))

KL divergence is positive : the ELBO is a lower bound for log pθ(x)
(the “evidence”)

By maximising the ELBO, we minimise the KL divergence
between qφ(z|x) and pθ(z|x)
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Variational autoencoders - Variational Autoencoder loss
function

We can rewrite the ELBO in the following manner

ELBO(qφ) = Eqφ [log(pθ(x|z))]−KL(qφ(z|x) || pθ(z))

We know all of these terms ! : we can use it as a VAE loss function !

Variational Autoencoder loss function

L(x; θ, φ) =

Reconstruction error︷ ︸︸ ︷
Eqφ [log(pθ(x|z))]− KL(qφ(z|x) || pθ(z))︸ ︷︷ ︸

Enforce the prior distribution

Important note ! : we want to maximise this loss function !
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Variational autoencoders

Variational Autoencoder summary

1 We modelled the autoencoding process using a probabilistic (Bayesian)
framework, with an observed and a hidden variable

2 We wanted to calculate the posterior distribution pθ(z|x), but this is
complicated

3 We used an approximation qφ(z|x) to pθ(z|x)

4 We used the ELBO as a loss function to minimise KL(qφ(z|x)||pθ(z))
Ensures a good reconstruction
Encourages the latent space to follow our chosen distribution (the prior
pθ(z))
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Variational Autoencoder

There remains one more important detail : how to backpropagate
through samples of z ? Random variable, not differentiable

Solution : “reparametrisation trick”, make the random element an
network input

In the Gaussian case, where qφ is a multivariate Gaussian vector, with
mean µ and diagonal covariance matrix σId, this gives

z = µ+ σε, ε ∼ N (0, Id)

µ and σ are produced by the encoder

Thus, backpropagation can be carried out w.r.t to the parameters φ
and θ
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Variational autoencoder in practice

The variational autoencoder is actually quite simple to implement

Take the case of Gaussian qφ(z|x)

Encoder

Decoder

Encoder and decoder can be MLPs, CNNs ...

What is the loss in practice ?
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Variational autoencoder in practice

Let us take the following case, well-adapted to the mnist dataset :
Prior : pθ(z) ∼ N (0, Id)
Variational approximation : qφ(z|x) ∼ N (µ, σId), where (µ, σ) = E(x)
Likelihood : pθ(x|z) ∼ Ber(y), where y = D(z)

L =

Reconstruction error︷ ︸︸ ︷
mn∑
i=1

xi log yi + (1− xi) log(1− yi)−
1

2

d∑
j=1

(
1 + log

(
σ2j
)
− µ2j − σ2j

)
︸ ︷︷ ︸

KL divergence
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Variational autoencoder results

Some results of variational autoencoders on mnist data : random
samples

Alasdair Newson Deep Learning 49
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Variational autoencoder results

Some results of VAEs on mnist, face data : uniform samples

Alasdair Newson Deep Learning 50
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Variational autoencoder results

Some results of VAEs on more complex digits data
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Variational autoencoder

Variational Autoencoders : summary

Rigourous framework to autoencode data onto a probabilisitcally
modelled latent space

Advantages

Theoretically-motivated, loss function meaningful
Learn to and from mapping (encoder and decoder)

Drawbacks

Have to re-write loss function for each different model, not always easy
In practice, do not produce as complex examples as Generative
Adversarial Networks, which we will see next week
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Generative Adversarial
Networks

Alasdair Newson Deep Learning 53
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Generative Adversarial networks

We saw that variational autoencoders were not straightforward to
adapt to new situations

Generative adversarial networks (GANs)∗ are another generative
model that generate random examples of high-dimensional data

Alasdair Newson Deep Learning 54
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Generative Adversarial networks

The GAN contains only the decoder part of an autoencoder

The code z is explicitly sampled from a chosen distribution pz
(contrary to the VAE)

The decoder is referred to here as the “Generator”

We suppose that the data in the databse follows a distribution pdata

We want to make the distribution of x = G(z), pG similar to pdata
∗

Alasdair Newson Deep Learning 55
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Generative Adversarial networks

However, with no reconstruction error, how do we make x look like the
data ?

Answer : Train another network : a Discriminator D (or “Adversarial
Network”)

D : Rmn → [0, 1] is trained to identify “good” (or “true”) examples
of the data

G : Rz → Rmn is trained to produce realistic data examples

The two networks are trained at the same time, and each try to fool
the other !

Alasdair Newson Deep Learning 56
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Generative Adversarial networks

However, with no reconstruction error, how do we make x look like the
data ?

Answer : Train another network : a Discriminator D (or “Adversarial
Network”)

D : Rmn → [0, 1] is trained to identify “good” (or “true”) examples
of the data

G : Rz → Rmn is trained to produce realistic data examples

The two networks are trained at the same time, and each try to fool
the other !
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Generative Adversarial networks

The full GAN architecture looks like this

Alasdair Newson Deep Learning 58
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Generative Adversarial networks

The discriminator is a really interesting idea, why ?

Reliable and powerful image/data models are difficult to establish

It is difficult to say whether an image is “good” or not

The discriminator acts as a learned image norm !
It can be used for other purposes also ...

How is this is achieved ? Via a well-designed loss function
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Generative Adversarial networks

GAN loss

Train generator G and the discriminator A in a minmax optimisation problem

min
G

max
D

D is trying to recognize true data︷ ︸︸ ︷
Ex∼pdata [logD(x)] + Ez∼pz [log (1−D(G(z)))]︸ ︷︷ ︸

G is trying to fool D,
but D is trying not to be fooled

Minimisation w.r.t G

Second term is low, =⇒ 1−D(G(z)) is close to 0 =⇒ D is
recognising G(z) as a true data example : G has fooled D

Maximisation w.r.t D

First term is high =⇒ D(x) is close to 1 : D is learning to recognize true
data

Second term is high =⇒ 1−D(G(z)) is close to 1 : D is not getting

fooled by G
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Generative Adversarial networks

GAN loss

Train generator G and the discriminator A in a minmax optimisation problem

min
G

max
D

D is trying to recognize true data︷ ︸︸ ︷
Ex∼pdata [logD(x)] + Ez∼pz [log (1−D(G(z)))]︸ ︷︷ ︸

G is trying to fool D,
but D is trying not to be fooled

Minimisation w.r.t G

Second term is low, =⇒ 1−D(G(z)) is close to 0 =⇒ D is
recognising G(z) as a true data example : G has fooled D

Maximisation w.r.t D

First term is high =⇒ D(x) is close to 1 : D is learning to recognize true
data

Second term is high =⇒ 1−D(G(z)) is close to 1 : D is not getting

fooled by G
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Generative Adversarial networks

GAN loss

Train generator G and the discriminator A in a minmax optimisation problem

min
G

max
D

D is trying to recognize true data︷ ︸︸ ︷
Ex∼pdata [logD(x)] + Ez∼pz [log (1−D(G(z)))]︸ ︷︷ ︸

G is trying to fool D,
but D is trying not to be fooled

Minimisation w.r.t G

Second term is low, =⇒ 1−D(G(z)) is close to 0 =⇒ D is
recognising G(z) as a true data example : G has fooled D

Maximisation w.r.t D

First term is high =⇒ D(x) is close to 1 : D is learning to recognize true
data

Second term is high =⇒ 1−D(G(z)) is close to 1 : D is not getting

fooled by G
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Generative Adversarial networks

At the beginning of the training, the examples from G are not very
good : D can spot them easily

At the end of training, the discriminator should not be able to tell the
true data from the generated data : pG = pdata

Optimisation alternates between minimisation and maximisation steps

Are we sure that this loss is well-designed for this purpose ?

In fact, we can prove that this is the case
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Generative Adversarial networks

First, we establish the following lemma :

Optimal GAN discriminator D∗

For a fixed G, the optimal D is D∗(x) = pdata(x)
pdata(x)+pG(x)

L(G,D) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))]

=

∫
x
pdata(x) log(D(x))dx+

∫
z
pz(z) log(1−D(G(z)))dz

=

∫
x
pdata(x) log(D(x)) + pG(x) log(1−D(x))dx.

For every x, the maximum of the previous equation w.r.t D(x) is

D∗(x) =
pdata(x)

pdata(x) + pG(x)
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Generative Adversarial networks

Given this lemma, we can now state the main optimality theorem

Global optimum of the GAN loss function

The global optimum of the GAN loss function is achieved if and only if
pG = pdata. At this point L(G,D) = − log 4.

First, our previous lemma allows us to rewrite the loss function

max
D
L(G,D) = Ex∼pdata(x) [logD∗(x)] + Ez∼pz(z) [log(1−D∗(G(z)))] (3)

= Ex∼pdata(x)
[
log

pdata(x)

pdata(x) + pG(x)

]
+ Ex∼pG(x)

[
log

(
pG(x)

pdata(x) + pG(x)

)]
.

(4)

Therefore, if pG = pdata, then L(G,D) = log 1
2 + log 1

2 = log(−4)
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Generative Adversarial networks

Now, we are going to show that log(−4) is the optimal value of the
loss function

First, we remark that :

− log(4) = Ex∼pdata(x) [− log(2)] + Ex∼pG(x) [− log(2)] . (5)

Therefore, by subtracting Equation 5 from Equation 4, we have

L(G,D∗) = − log(4) +

∫
pdata(x) log

pdata(x)
1
2

(pdata(x) + pG(x))
dx +∫

pG(x) log
pdata(x)

1
2

(pdata(x) + pG(x))
dx

= − log(4) +KL
(
pdata ||

pdata + pG
2

)
+KL

(
pG ||

pdata + pG
2

)
.
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Generative Adversarial networks

This can also be rewritten as

L(G,D∗) = − log(4) + 2 JSD (pdata || pG).

The JSD is the Jensen-Shannon divergence

This is another distance between distributions. For p and q, we have :

JSD(p, q) =
1

2
KL

(
p || 1

2
(p+ q)

)
+

1

2
KL

(
q || 1

2
(p+ q)

)

The JSD is non-negative and equal to zero if and only if
pdata = pG

Therefore − log(4) is the optimal value, and only reached when
pdata = pG
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Generative Adversarial networks

To summarise, we know that by minimising the GAN loss, we are
sure to encourage pG to approximate pdata

In spite of this theoretical result (and others), training GANs is very
difficult and is a current hot topic of research
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Generative Adversarial networks

Here are some results of the original GAN paper∗

In the space of four years, these results have been vastly improved on

There are many, many GAN variants. We present a few now
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∗Generative Adversarial Nets, Goodfellow et al, NIPS 2014
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Conditional Generative Adversarial networks

The Conditional GAN allows a label c to be added to the loss function

It is then possible to generate examples of a given class

min
G

max
D

[logD(x|c)] + [log (1−D(G(z|c)))]
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∗Conditional Generative Adversarial Nets, Mirza, M. and Osindero, S., arXiv preprint arXiv :1411.1784, 2014
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Generative Adversarial networks

Examples of results of Conditional GAN
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∗Conditional Generative Adversarial Nets, Mirza, M. and Osindero, S., arXiv preprint arXiv :1411.1784, 2014
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Generative Adversarial networks

Deep Convolutional Generative Adversarial Networks (DCGAN)

More complex data, sharper generation
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∗Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, Radford, A. and Chintala,
S., arXiv :1511.06434, 2015
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Generative Adversarial networks

Deep Convolutional Generative Adversarial Networks (DCGAN)

Linear algebra in the latent space

Alasdair Newson Deep Learning 81

∗Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, Radford, A. and Chintala,
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Generative Adversarial networks

A big problem of the GAN is known as mode collapse. This occurs
when the training leads a GAN to produce the same result all the time

The “Wasserstein GAN”† modifies the loss function by using a
different distance between probabilities : the Wasserstein distance

W (p, q) = inf
γ∈

∏
(p,q)

E(x,y)∼γ [‖x− y‖]

∏
(p, q) is the set of all the joint distributions of (x, y) whose

marginals are p and q

Some sequences of distributions converge under the Wasserstein
distance, but not other distances (the KL divergence, for example)

Using this formulation stabilises the GAN training
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Generative Adversarial networks

Very recently, extremely realistic, high-resolution results have been
achieved by different research teams†
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Generative Adversarial networks

Summary on GANs

GANs are a powerful and generic way of producing random examples
of complex images

However, they are notoriously difficult to train, this is a current area
of research

A significant disadvantage with respect to variational autoencoders is
that GANs do not train an encoder : it is a one-way transformation

Often, for restoration or other inverse problems, it is useful to have an
“inverse” transformation
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Texture synthesis and
style transfer models
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Texture synthesis and style transfer

We have seen two methods for creating random examples of complex
images

There is another type of generative model specifically designed for
texture synthesis and style transfer

These are two very common tasks in image and video editing

Texture synthesis Style transfer
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Texture synthesis and style transfer

This set of methods is based on the work of Gatys et al.†,‡, similar
approach as deep dream and variants

We suppose that texture and style are coded somewhere in the
layers of a neural network

Small patterns, repetitve motifs

We will iterate gradient descent on an image to encourage similar
representations inside the network
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† Texture synthesis using convolutional neural networks, Gatys, L. A., Ecker, A. S, and Bethge, M., NIPS, 2015
‡ A Neural Algorithm of Artistic Style, Gatys, L. A., Ecker, A. S, and Bethge, M., arXiv :1508.06576, 2015
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Texture synthesis

First, let’s take the case of texture synthesis, suppose we have an
image x̂ whose texture we want to copy

Let u`i,j be the response of a neural network (often a classification
CNN) to an image at layer ` for channel i at position j

We define C`i,j =
∑

k u
`
i,ku

`
j,k, the dot product between two channels

This represents the correlations between different channels in the
CNN : a characteristic of the texture

CNN <

<,

Dot product between two feature layers
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Texture synthesis

Why is this quantity characteristic of texture ? Textures are stationary
random processes

This means that the statistical properties of textures should not
depend on spatial location†

Therefore, we carry out the dot product to remove spatial dependency
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† A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients, Portilla, J and Simoncelli, E. P,
International Journal of Computer Vision, 2000
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Texture synthesis and style transfer

We try to find an output image y which minimises the following loss :

LTexture(y; x̂) =
∑
`

wl
∑
i,j

1

2

(
C`i,j − Ĉ`i,j

)2
w` is a weighting function for each layer

Texture synthesis algorithm

y0 ← random white noise
for i = 1 to N do
yn+1 = yn − ε∇xLTexture(yn)

end for
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Texture synthesis

Here are some image texture synthesis examples with this method, and
variants
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† Texture Networks : Feed-forward Synthesis of Textures and Stylized Image, Ulyanov et al., axrXiv, 2016
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Style transfer

Now, we look at the case of style transfer. We have two images :
x̃ whose content we wish to copy
x̂ whose style we wish to copy

Contrary to texture, content is spatially dependent

Alasdair Newson Deep Learning 95

† Image from Deep Photo Style Transfer, Luan et al., arXiv :1703.07511v3, 2017
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Style transfer

We define a content loss :

LContent(y; x̃, `) =
∑
i,j

(
u`i,j − ũ`i,j

)2
The final loss is a mixture of content and style (texture) losses :

L(y; x̃, x̂) = αLcontent(y; x̃) + βLtexture(y; x̂)

The algorithm to produce the end result is the same : random
initialisation and iterate gradient descent
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Style transfer - some results†
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Texture synthesis and style tranfer

Summary of texture synthesis and style transfer

Inter-channel correlations of neural network layers provide a powerful
model of texture/style

This gives a flexible, easy-to-implement algorithm : random
initialisation and iterate gradient descent

Main drawback : only applicable to a restricted class of problems
(texture, style)
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Summary
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Conclusion

We have seen three types of generative models

1 Variational autoencoders

An Autoencoder whose latent space is encouraged to follow a certain
distribution
Variational Bayesian formulation

2 Generative Adversarial Networks

A generator trained to create realistic data
A discriminator trained to identify true and false data examples

3 Models for texture synthesis and style transfer

Iterative method to encourage similar intra-layer correlations of neural
network
Start with an initial point, iterate gradient descent w.r.t image
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Summary of advantages and weaknesses of Generative
Models

Model/method Advantages Disadvantages

VAE Rigourous formulation

Encoder and decoder
trained

Loss must be rewritten for
different probability
distributions (not easy)

In practice, more limited
applications than GANs

GAN Highly flexible

Applied to complex data,
impressive results

Difficult to train

No reverse transformation
(encoder)

Texture/style
model

Versatile, simple algorithm

Produces best
texture/style results

Only applicable to limited
cases
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