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Image acquisition model

ideal image u : R2 → [0,∞)

Measurements ũ : Z2 → [0, 255] ∩ Z

ũ = g(∆Z2((u ◦ φ) ∗ h + n))

Geometric deformation φ

blur kernel h

contrast change g

Simplified model

x = ∆Z2∩[0,N)2(u ∗ sinc) (ideal discrete image x ∈ RN2
)

y = A(x) + n (degraded measurements)
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Inverse Problems in Imaging

Estimate clean image x ∈ RN

from noisy, degraded measurements y ∈ Rm.

Inverse
problem

Measurements y Ideal image x
.

Known degradation model (usually log-concave):

pY |X (y | x) ∝ e−F (x,y) where F (x, y) =
1

2σ2
‖Ax− y‖2. (1)
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Inverse Problems in Imaging

Estimate clean image x ∈ RN

from noisy, degraded measurements y ∈ Rm.
Known degradation model (usually log-concave):

pY |X (y | x) ∝ e−F (x,y) where F (x, y) =
1

2σ2
‖Ax− y‖2. (1)

Variational/Bayesian Approach

Use image prior pX (x) ∝ e−λR(x) to compute estimator

x̂map =arg max
x

pX |Y (x | y)=arg min
x
{F (x, y) + λR(x)} (2)

x̂mmse =arg min
x

E
[
‖X − x‖2

∣∣∣ Y = y
]

(3)
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Bayesian Estimators

Simplified model

x = ∆Z2∩[0,
√
N)2(u ∗ sinc) (ideal discrete image x ∈ RN)

y = A(x) + n (degraded measurements)

Ill-posed A ⇒ need for regularization (prior knowledge)

risk minimization (MMSE): minx E
[
‖X − x‖2

∣∣ Y = y
]

posterior maximisation (MAP) maxx P [ X = x | Y = y ]
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Example of MAP estimation :

Observation model:

P [ Y = y | X = x ] = P [N = (y − A(x))] = Ce−
1

2σ2 ‖y−A(x)‖2
2

Prior model
P [X = x] = C ′e−λR(x)

Posterior (using Bayes Theorem):

P [ X = x | Y = y ] = P [ Y = y | X = x ]P [X = x]

log-Posterior

− logP [ X = x | Y = y ] = E (x) =
1

2σ2
‖y − A(x)‖2

2
︸ ︷︷ ︸

F (x)

+λR(x)+C ′′
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Bayesian Estimators

Simplified model

x = ∆Z2∩[0,
√
N)2(u ∗ sinc) (ideal discrete image x ∈ RN)

y = A(x) + n (degraded measurements)

Ill-posed A ⇒ need for regularization (prior knowledge)

risk minimization (MMSE): minx E
[
‖X − x‖2

∣∣ Y = y
]

posterior maximisation (MAP) maxx P [ X = x | Y = y ]

Special case n ∼ N(0, σ2) and x ∼ N(µ,Σ) are Gaussian

Both MMSE & MAP lead to the same closed form (Wiener filter):
x̂ = (A∗A + σ2Σ−1)−1(A∗y + σ2Σ−1µ)

WANING!! This is a very special case !!
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Choosing a prior for the clean image x

Tikhonov regularization: (convex, smooth)

R(x) =
∑

i

‖∇xi‖2
2

Total Variation regularization: (convex, non-smooth)

R(x) =
∑

i

‖∇xi‖2

Wavelet shrinkage: (convex, non-smooth)

R(x) = ‖W x‖1

Patch based regularization (EPLL): (non-convex, smooth)
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Choosing a prior for the clean image x

Tikhonov regularization: (convex, smooth)

R(x) =
∑

i

‖∇xi‖2
2

Total Variation regularization: (convex, non-smooth)

R(x) =
∑

i

‖∇xi‖2

Wavelet shrinkage: (convex, non-smooth)

R(x) = ‖W x‖1

Patch based regularization (EPLL): (non-convex, smooth)

Neural network to learn R(x) ?
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Convex Optimization Methods

We want to minimize E (x) = F (x) + R(x).

Gradient Descent Method

xk+1 = xk − α∇E (xk)

Converges to stationary point x∗

if E convex, ∇E is L− Lipschitz , and α ∈ [0, 2/L]

FBS / ISTA / PGD

1 vk = xk − α∇R(xk)

2 xk+1 = proxαF (vk) = arg minx
1
2‖x− vk‖2 + αF (x)

Converges to stationary point x∗

if F ,R convex, ∇R is L− Lipschitz , and α ∈ [0, 2/L]

Other splitting methods: HQS, DRS, ADMM, Chambolle-Pock

Andrés ALMANSA, Säıd LADJAL, Alasdair NEWSON Lecture # 3: Plug & play methods



Introduction
Bayesian & Variational Methods

Plug & Play methods

Convex Optimization Methods

We want to minimize E (x) = F (x) + R(x).

Gradient Descent Method

FBS / ISTA / PGD

ADMM

1 vk+1 = proxαR(αuk − xk)

2 xk+1 = proxαF (αuk + vk)

3 uk+1 = uk + 1
α (vk+1 − xk+1)

Other splitting methods: HQS, DRS, ADMM, Chambolle-Pock
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Neural Networks for inverse problems: Two paradigms

Learning-based approach : find a sufficient number of image
pairs (xi , yi ) and train a neural network fθ to invert A by
minimizing the empirical risk

∑
i ‖fθ(yi )− xi‖2

2

3 no need to model A, n nor prior for x
7 needs retraining if A or n change

Bayesian approach : Model separately
1 conditional probability P [ Y = y | X = x ]

(using physical model, calibration)
2 prior model P [X = x] (through NN learning)
3 Use Bayes theorem to estimate x via MAP or MMSE
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Using NNs to learn a prior for the clean image x

Neural network to learn R(x) ?

s difficult to train !
s properties of R ? (we need to minimise F (x) + λR(x) !!)
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Using NNs to learn a prior for the clean image x

Indirect (Plug & Play) approach :

Train a neural network to solve a simpler (denoising) problem:

Dσ : y 7→ arg min
x

1

2σ2
‖x− y‖2

2 + R(x)

Dσ = proxσ2R is the proximal operator of the regularizer ... or
∇R(x) = f (Dσ(x))
To regularize the original problem use a splitting scheme and

use Dσ instead of proxσ2R ... or
use f (Dσ(x)) instead of ∇R(x)
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Plug & Play approach

A myriad of solutions have been proposed:

RED - Regularization by Denoising (Reehorst and Schniter,

2019; Romano et al., 2017)

HQS - Half Quadratic Splitting (Geman & Yang 2002; Zoran

& Weiss 2012)

ADMM - Alternated Direction Method of Multipliers (Boyd,

2010; Ryu et al., 2019)

ISTA Proximal-gradient algorithm (Xu et al., 2020)

Questions

Does the scheme converge?

Does there exist a regularizer R such that proxσ2R = Dσ?
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RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
ADMM - Alternate Direction Method of Multipliers

RED - Regularisation by Denoising

RED constructs an explicit regularizer from a denoiser:

RRED(x) =
1

2
〈x, x− Dσ(x)〉

Theorem (RED’s gradient (Reehorst & Schnitter 2018))

If the denoiser Dσ :

is locally homogeneous (i.e. (1 + ε)Dσ(x) = Dσ((1 + ε)x)) and

has symmetric Jacobian

then RRED ’s gradient is writes ∇RRED(x) = x− Dσ(x)
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RED - Regularisation by Denoising

RRED(x) =
1

2
〈x, x− Dσ(x)〉

Theorem (RED’s gradient (Reehorst & Schnitter 2018))

If the denoiser Dσ :

is locally homogeneous (i.e. (1 + ε)Dσ(x) = Dσ((1 + ε)x)) and

has symmetric Jacobian

then RRED ’s gradient is writes ∇RRED(x) = x− Dσ(x)

Collorary A gradient descent scheme (without splitting) is easy to
implement:

∇E (x) = (∇F + Id − Dσ)(x)
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RED - Regularisation by Denoising

RRED(x) =
1

2
〈x, x− Dσ(x)〉

Theorem (RED’s gradient (Reehorst & Schnitter 2018))

If the denoiser Dσ :

is locally homogeneous (i.e. (1 + ε)Dσ(x) = Dσ((1 + ε)x)) and

has symmetric Jacobian

then RRED ’s gradient is writes ∇RRED(x) = x− Dσ(x)

Lemma 1: If the denoiser D is locally homogeneous then [JD(x)]x = D(x)

Lemma 2: RRED ’s gradient is ∇R(x) = x− 0.5Dσ(x)− 0.5[JD(x)]Tx

Lemma 3: If the denoiser D is locally homogeneous and has symmetric
Jacobian then ∇RRED(x) = x− D(x)

Andrés ALMANSA, Säıd LADJAL, Alasdair NEWSON Lecture # 3: Plug & play methods



Introduction
Bayesian & Variational Methods

Plug & Play methods

RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
ADMM - Alternate Direction Method of Multipliers

RED - Regularisation by Denoising

RRED(x) =
1

2
〈x, x− Dσ(x)〉

Theorem (RED’s gradient (Reehorst & Schnitter 2018))

If the denoiser Dσ :

is locally homogeneous (i.e. (1 + ε)Dσ(x) = Dσ((1 + ε)x)) and

has symmetric Jacobian

then RRED ’s gradient is writes ∇RRED(x) = x− Dσ(x)

Reality check

eJf =
‖Jf − JTf ‖2

F

‖Jf ‖2
F

5

TDT MF NLM BM3D TNRD DnCNN
eJ
f (x) 5.36e-21 1.50 0.250 1.22 0.0378 0.0172

TABLE I
AVERAGE JACOBIAN-SYMMETRY ERROR ON 16×16 IMAGES

e∇
f (x) TDT MF NLM BM3D TNRD DnCNN

∇ρred(x) from (13) 0.381 0.904 0.829 0.790 0.416 1.76
∇ρred(x) from (38) 0.381 1.78e-21 0.0446 0.447 0.356 1.69
∇ρred(x) from (22) 4.68e-19 1.75e-21 1.32e-20 4.80e-14 3.77e-19 6.76e-13

TABLE II
AVERAGE GRADIENT ERROR ON 16×16 IMAGES

Table I shows1 the average value of eJ
f (x) for 17 different

image patches2 of size 16×16, using denoisers that assumed a
noise variance of 252. The denoisers tested were the TDT from
(30) with the 2D Haar wavelet transform and soft-thresholding,
the median filter (MF) [24] with a 3 × 3 window, non-local
means (NLM) [4], BM3D [5], TNRD [6], and DnCNN [7].
Table I shows that the Jacobians of all but the TDT denoiser
are far from symmetric.

Jacobian symmetry is of secondary interest; what we really
care about is the accuracy of the RED gradient expressions
(13) and (22). To assess gradient accuracy, we numerically
evaluated the gradient of ρred(·) at x using

ρred(x + ϵen) − ρred(x − ϵen)

2ϵ
!
[
∇̂ρred(x)

]
n

(36)

and compared the result to the analytical expressions (13) and
(22). Table II reports the normalized gradient error

e∇
f (x) ! ∥∇ρred(x) − ∇̂ρred(x)∥2

∥∇̂ρred(x)∥2
(37)

for the same ϵ, images, and denoisers used in Table I. The
results in Table II show that, for all tested denoisers, the
numerical gradient ∇̂ρred(·) closely matches the analytical
expression for ∇ρred(·) from (22), but not that from (13). The
mismatch between ∇̂ρred(·) and ∇ρred(·) from (13) is partly
due to insufficient JS and partly due to insufficient LH, as we
establish below.

F. Local Homogeneity Experiments

Recall that the TDT denoiser has a symmetric Jacobian,
both theoretically and empirically. Yet Table II reports a
disagreement between the ∇ρred(·) expressions (13) and (22)
for TDT. We now show that this disagreement is due to
insufficient local homogeneity (LH).

To do this, we introduce yet another RED gradient expres-
sion,

∇ρred(x)
LH
= x − 1

2
[Jf (x)]x − 1

2
[Jf(x)]⊤x, (38)

which results from combining (22) with Lemma 1. Here, LH
=

indicates that (38) holds under LH. In contrast, the gradient
expression (13) holds under both LH and Jacobian symmetry,

1Matlab code for the experiments is available at
http://www2.ece.ohio-state.edu/∼schniter/RED/index.html.

2We used the center 16 × 16 patches of the standard Barbara, Bike,
Boats, Butterfly, Cameraman, Flower, Girl, Hat, House, Leaves, Lena, Parrots,
Parthenon, Peppers, Plants, Raccoon, and Starfish test images.

TDT MF NLM BM3D TNRD DnCNN

eLH,1
f (x) 2.05e-8 0 1.41e-8 7.37e-7 2.18e-8 1.63e-8

eLH,2
f (x) 0.0205 2.26e-23 0.0141 3.80e4 2.18e-2 0.0179

TABLE III
AVERAGE LOCAL-HOMOGENEITY ERROR ON 16×16 IMAGES

while the gradient expression (22) holds in general (i.e., even
in the absence of LH and/or Jacobian symmetry). We also
introduce two normalized error metrics for LH,

eLH,1
f (x) !

∥∥f ((1 + ϵ)x) − (1 + ϵ)f(x)
∥∥2

∥(1 + ϵ)f(x)∥2
(39)

eLH,2
f (x) !

∥∥[Ĵf (x)]x − f (x)
∥∥2

∥f(x)∥2
. (40)

which should both be nearly zero for LH f(·). Note that
eLH,1

f quantifies LH according to definition (12) and closely
matches the numerical analysis of LH in [1]. Meanwhile, eLH,2

f

quantifies LH according to Lemma 1 and to how LH is actually
used in the gradient expressions (13) and (38).

The middle row of Table II reports the average gradient error
of the gradient expression (38), and Table III reports average
LH error for the metrics eLH,1

f and eLH,2
f . There we see that the

average eLH,1
f error is small for all denoisers, consistent with

the experiments in [1]. But the average eLH,2
f error is several

orders of magnitude larger (for all but the MF denoiser). As
discussed below, these seemingly small imperfections in LH
have a significant effect on the RED gradient expressions (13)
and (38).

Starting with the TDT denoiser, Table II shows that the
gradient error on (38) is large, which can only be caused by
insufficient LH. The insufficient LH is confirmed in Table III,
which shows that the value of eLH,2

f (x) for TDT is non-
negligible, especially in comparison to the value for MF.

Continuing with the MF denoiser, Table I indicates that its
Jacobian is far from symmetric, while Table III indicates that
it is LH. The gradient results in Table II are consistent with
these behaviors: the ∇ρred(x) expression (38) is accurate on
account of LH being satisfied, but the ∇ρred(x) expression
(13) is inaccurate on account of a lack of JS.

The results for the remaining denoisers NLM, BM3D,
TNRD, and BM3D show a common trend: they have non-
trivial levels of both JS error (see Table I) and LH error (see
Table III). As a result, the gradient expressions (13) and (38)
are both inaccurate (see Table II).

In conclusion, the experiments in this section show that the
RED gradient expressions (13) and (38) are very sensitive
to small imperfections in LH. Although the experiments in
[1] suggested that many popular image denoisers are approx-
imately LH, our experiments suggest that their levels of LH
are insufficient to maintain the accuracy of the RED gradient
expressions (13) and (38).
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Alternative to RED: Tweedie’s formula (Efron 2011)

Tweedie’s formula

If X ∼ pX , N ∼ N(0, σ2Id) and Dσ(y) = E [ X | X + N = y ]
then

(Dσ − Id)(x) = σ2∇ log(pX ∗ gσ)(x)

Using the smooth prior Rσ(x) = − log(pX ∗ gσ)
We want to minimize:

E (x) = F (x) + λRσ(x)

And the gradient writes exactly:

∇E (x) = (∇F +
λ

σ2
(Id − Dσ))(x)

This justifies the RED algorithm (for λ
σ2 = 1) for any denoiser that

is computed as an MMSE. For λ
σ2 6= 1 the above scaling is required.
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Tweedie’s formula and posterior sampling (Guo et al.,

2019)

Tweedie’s formula

If X ∼ pX , N ∼ N(0, σ2Id) and Dσ(y) = E [ X | X + N = y ]
then

(Dσ − Id)(x) = σ2∇ log(pX ∗ gσ)(x)

Instead of maximizing π(x) = pX |Y (x | y)
We can try to take samples Xk ∼ π
using the Langevin algorithm

Xk+1 = Xk + δ∇ log π(Xk) +
√

2δZk with Zk ∼ N(0, Id)

Using Tweedie’s formula we can write

∇ log π(x) = (−∇F +
1

σ2
(Dσ − Id))(x)
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HQS - Half Quadratic Splitting

Instead of minimizing the original problem

E (x) = F (x) + λR(x)

we introduce an auxiliary variable v and we aim at solving the
equivalent constrained minimization problem :

min
x,v

F (x) + λR(v) under the constraint x = v

The constraint can be added back to the energy (preceded by a
Lagrange multiplier β)

E1(x, v, β) = F (x) + β‖x− v‖2 + λR(v)

We know that for β large enough joint minimization of E1 is
equivalent to minimizing E .
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HQS - Half Quadratic Splitting

E1(x, v, β) = F (x) + β‖x− v‖2 + λR(v)

To ensure that β is large enough we can use a continuation scheme:

arg min
x

E (x) = lim
β→∞

arg min
x

min
v

E1(x, v, β)

Which inspires this alternating a minimization algorithm:

1 Initialization: x0, v0, β0 > 0, γ > 0

2 For k=1, ... until convergence

3 xk = arg minx E1(x, vk−1, βk−1). // inverse problem

4 vk = arg minv E1(xk , v, βk−1). // regularization

5 βk = γβk−1

6 End for

This method (which was proposed by Geman & Yang (2002)) was notably
used by Zoran & Weiss (2012) to optimize their EPLL method.

Andrés ALMANSA, Säıd LADJAL, Alasdair NEWSON Lecture # 3: Plug & play methods



Introduction
Bayesian & Variational Methods

Plug & Play methods

RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
ADMM - Alternate Direction Method of Multipliers

HQS Plug & Play

The fourth step in the HQS method ...

4 vk = arg minv E1(xk , v) = arg minv βk‖xk − v‖2 + R(v)

... can be interpreted as a denoising of xk with noise variance σ2
k = 1/(2βk)

Replace step 4 by a trained denoiser Dσk :

1 Initialization: x0, v0, β0

2 For k=1, ... until convergence

3 xk = arg minx E1(x, vk−1). (inverse problem)

4 vk = Dσk (xk). (regularization)

5 βk = γβk−1

6 End for

Obs 1: In this scheme the denoiser needs to be trained for several values of σk

Obs 2: The convergence of the P&P HQS method has not been established.

We refer to it here as an historical introduction.
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Method of Multipliers
The HQS method requires β to increase during the iterations.

A more proper method which can ensure convergence with a fixed parameter is

the method of multipliers, which introduces a Lagrange multiplier wi for each

constraint xi = vi :

E2(x, v,u) = F (x) + uT (x− v) + λR(v)

We can show that

arg min
x

min
v

max
u

E2(x, v,u) = arg min
x

E (x)

This results in the following algorithm

1 Initialization: x0, v0,u0, α > 0,
2 For k=1, ... until convergence
3 xk = arg minx E2(x, vk−1,uk−1). // inverse problem
4 vk = arg minv E2(xk , v,uk−1). // regularization
5 uk = uk−1 + α(xk − vk) // gradient ascent on multiplier
6 End for
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ADMM - unscaled version
A more flexible version of this algorithm can be constructed, which:

has milder conditions on D and R

converges faster

It is obtained by adding the `2 norm of the constraint to build the augmented

Lagrangian:

E3(x, v,u) = F (x) + uT (x− v) + λR(v) +
ρ

2
‖x− v‖2

The corrresponding alternated optimization (where α = ρ is the unscaled

version of ADMM:

1 Initialization: x0, v0,u0, ρ > 0,
2 For k=1, ... until convergence
3 xk = arg minx E3(x, vk−1,uk−1). // inverse problem
4 vk = arg minv E3(xk , v,uk−1). // regularization
5 uk = uk−1 + ρ(xk − vk) // gradient ascent on multiplier
6 End for
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Plug & Play methods

RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
ADMM - Alternate Direction Method of Multipliers

ADMM - scaled version
ADMM is often written in a more convenient way as follows:
Defining the residual of the constraint as r = x− v
the ”constraint” part of the Lagrangian can be rewritten

uT r +
ρ

2
‖r‖2 =

ρ

2
‖r +

1

ρ
u‖2 − 1

2ρ
‖u‖2 =

ρ

2
‖r + u‖2 − ρ

2
‖u‖2

where u := 1
ρ
u is the scaled multiplier

With this modification the scaled ADMM that results from minimizing

E4(x, v,u) = F (x) + ρuT (x− v) + λR(v) +
ρ

2
‖x− v‖2

and the algorithm becomes:

1 Initialization: x0, v0,u0, ρ > 0,
2 For k=1, ... until convergence
3 xk = arg minx E4(x, vk−1,uk−1). // inverse problem
4 vk = arg minv E4(xk , v,uk−1). // regularization
5 uk = uk−1 + (xk − vk) . // gradient ascent on multiplier
6 End for
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Plug & Play methods

RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
ADMM - Alternate Direction Method of Multipliers

ADMM - scaled version
ADMM is often written in a more convenient way as follows:
Defining the residual of the constraint as r = x− v
the ”constraint” part of the Lagrangian can be rewritten

uT r +
ρ

2
‖r‖2 =

ρ

2
‖r +

1

ρ
u‖2 − 1

2ρ
‖u‖2 =

ρ

2
‖r + u‖2 − ρ

2
‖u‖2

where u := 1
ρ
u is the scaled multiplier

With this modification the scaled ADMM that results from minimizing

E4(x, v,u) = F (x) + λR(v) +
ρ

2
‖x− v + u‖2 − ρ

2
‖u‖2

or expanding the two minimization steps:

1 Initialization: x0, v0, u0, ρ > 0,

2 For k=1, ... until convergence

3 xk = arg minx F (x) + ρ
2
‖x− (vk−1 − uk−1)‖2. // prox on inverse problem

4 vk = arg minv λR(v) + ρ
2
‖(xk + uk−1)− v‖2. // prox on regularization

5 uk = uk−1 + (xk − vk) . // gradient ascent on multiplier

6 End for
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Plug & Play methods

RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
ADMM - Alternate Direction Method of Multipliers

Plug & Play ADMM

As in the HQS case, step 4 in this algorithm is substituted by a NN-based
denoiser that was trained independently of this problem.
Instead of:

4 vk = arg minv λR(v) + ρ
2‖(xk + uk−1)− v‖2.

we write:

4 vk = Dσ(xk + uk−1).

where σ =
√
λ/ρ

Theorem (Plug & Play ADMM (Sreehari et al., 2016))

If Dσ is differentiable and its Jacobian JDσ
is symmetric with

eigenvalues in [0, 1], plus some mild technical conditions, then:

Dσ is the proximal operator of some energy function R.

Plug & Play ADMM converges to the global infimum of F (x) +R(x)
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Plug & Play methods

RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
ADMM - Alternate Direction Method of Multipliers

Plug & Play ADMM

Theorem (Plug & Play ADMM (Sreehari et al., 2016))

If Dσ is differentiable and its Jacobian JDσ is symmetric with
eigenvalues in [0, 1], plus some mild technical conditions, then:

Dσ is the proximal operator of some energy function R.

Plug & Play ADMM converges to the global infimum of F (x) +R(x)

The proof of this result is based on a result of J.J. Moreau (1965):

Theorem ( (J.J. Moreau, 1965) )

A denoiser D is the proximal operator of an energy R, iff

D is non-expansive ‖D(x)− D(v)‖2 ≤ ‖x− v‖2, and

there exists ϕ such that D(x) ∈ ∂ϕ(x)

Non-expansiveness results from the eigenvalue condition. And the
existence of ϕ from the symmetric Jacobian and Green’s theorem.
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Plug & Play methods

RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
ADMM - Alternate Direction Method of Multipliers

Plug & Play ADMM (bounded denoisers) (Chan et al., 2017)

A slight variation of the P&P-ADMM algorithm allows it to converge
under more reasonable conditions.
The modification is similar to the continuation scheme used for HQS:

1 Initialization: x0, v0,u0, ρ0 > 0, η < 1, γ > 1

2 For k=1, ... until convergence

3 xk = arg minx F (x) + ρ
2‖x− (vk−1 − uk−1)‖2.

// proximal descent on inverse problem

4 vk = Dσk (xk + uk−1) where σk =
√
λ/ρk−1

5 uk = uk−1 + (xk − vk) . // gradient ascent on multiplier

6 If ∆k ≥ η∆k−1 then ρk = γρk−1

7 Else ρk = ρk−1

8 End if

9 End for
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RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
ADMM - Alternate Direction Method of Multipliers

Plug & Play ADMM convergence for bounded denoisers

Theorem ( (Chan et al., 2017) )

H1: If F has bounded gradients, and

H2: Dσ is bounded ( there exists C > 0 such that for any image
x ∈ RN 1

N ‖Dσ(x)− x‖2 ≤ σ2C)

Then the iterates θk = (xk , vk ,uk) of Plug & Play ADMM converge to a
fixed point in `2 norm.

The convergence proof proceeds by showing that θk = (xk , vk ,uk) is a
Cauchy sequence by showing that
D(θk+1, θk) ≤ Cδk

for some C > 0 and δ ∈ (0, 1)
This is trivial in case 1 (else case when ∆k < η∆k−1).
Otherwise the update rule ρk+1 = γρk and boundedness of the denoiser
play an important role:
Indeed σk < γ−1/2σk−1, and therefore ‖Dσk (xk + uk−1)− (xk + uk−1))‖
also decreases because it is bounded.
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HQS - Half Quadratic Splitting
ADMM - Alternate Direction Method of Multipliers

PnP-ADMM - Non-expansive residual (Ryu et al., 2019)

Previous assumptions:

Dσ contractive => too strong

2Dσ − I contractive => too strong

Assumption A (ε-Lipschitz residual):

‖(Dσ − I )(x)− (Dσ − I )(y)‖2 ≤ ε2‖x − y‖2

Obs: Dσ can be trained to satisfy (A), via Residual Networks and
Spectral Normalization.
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Plug & Play methods

RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
ADMM - Alternate Direction Method of Multipliers

PnP-ADMM - Non-expansive residual (Ryu et al., 2019)

Assumption A (ε-Lipschitz residual):

‖(Dσ − I )(x)− (Dσ − I )(y)‖2 ≤ ε2‖x − y‖2

Idée de la preuve:
PnP ADMM has the same fixed points as PnP-DRS:

PnP-ADMM:

1 xk = proxF/ρ(vk−1 − uk−1).

2 vk = Dσ(xk + uk−1).

3 uk = uk−1 + (xk − vk) .

PnP-DRS

1 vk = proxF/ρ(uk−1).

2 xk = Dσ(2vk − uk−1).

3 uk = uk−1 + (xk − vk) .
multiplier
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Plug & Play methods

RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
ADMM - Alternate Direction Method of Multipliers

PnP-ADMM - Non-expansive residual (Ryu et al., 2019)

Assumption A (ε-Lipschitz residual):

‖(Dσ − I )(x)− (Dσ − I )(y)‖2 ≤ ε2‖x − y‖2

Idée de la preuve:
PnP ADMM has the same fixed points as PnP-DRS:
uk = T (uk−1) avec T = 1

2 I − 1
2 (2Dσ − I )(2 proxF/ρ−I )

Objective: Show that T is non-expansive => convergent sequence.
If:

Assumption A holds

F is µ-strongly convex

ε < 1

ρ < µ(1+ε−2ε2)
ε

Then T is contractive and both PnP-DRS and PnP-ADMM converge.
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ADMM - Alternate Direction Method of Multipliers

PnP-ISTA (Xu et al., 2020)

If Dσ is an MMSE denoiser with a non-degenerate prior pX
and ∇F is L-Lipschitz
then the PnP-ISTA scheme with α ∈ [0, 1/L] converges to a
stationary point of F + R∗

where Dσ = proxαR∗

PnP-ISTA

1 vk = xk − α∇F (xk)

2 xk+1 = proxαR∗(v
k) = Dσ(vk)

No contractivity condition on Dσ
No strongly convex condition on F
Proof: Based on (Gribonval, 2011)
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HQS - Half Quadratic Splitting
ADMM - Alternate Direction Method of Multipliers

Conclusion

RED requires either :

locally homogeneous denoiser with symmetric Jacobian
(Reehorst and Schniter, 2019), OR
careful parameter choice and denoiser with non-expansive
residual (Tweedie interpretation)

Plug & Play ADMM (adaptive ρ) requires bounded denoiser

difficult to achieve for small σ.
Convergence is forced by decreasing ρ artificially

Plug & Play ADMM (fixed ρ) requires either

non-expansive denoiser (Wavelet Thresholding, symmetrized
NLM (Sreehari et al., 2016)), or
denoiser with non-expansive residual ((Ryu et al., 2019)

retrains denoiser to satisfy this condition) and strongly convex
data-fitting.

Plug & Play ISTA (Xu et al., 2020) converges for ANY MMSE
denoiser.

JPMAP (González et al. 2019-2021) learns prior via denoising VAE.
This leads to a convergent bi-convex optimization scheme. (Lecture
8).
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Reading Guide

The Plug & Play methods we shall experiment with in the lab session are
discussed here:

PnP ADMM (Ryu et al., 2019)

PnP ISTA (Xu et al., 2020)

A critical review of the RED algorithm is provided by (Reehorst and

Schniter, 2019), and its Tweedie interpretation shall appear soon.
For a review of splitting methods in convex optimization see Emilie
Chouzenoux’s course or (Parikh and Boyd, 2014).
For a more in-depth review of the theory of monotone operators behind
the proofs of PnP ADMM and PnP ISTA see (Ryu and Boyd, 2016) or the
more comprehensive monograph (Bauschke and Combettes, 2017).
The bibliography below provides the doi link (official version). If you do not have access to the original (via your

university library’s online subscriptions) you can download the arXiv or HAL preprint or the PDF link to the

author’s page.
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J.J. Moreau (1965). “Proximité et dualité dans un espace hilbertien”. In: Bulletin
de la S.M.F. 93.3, pp. 273–299. issn: 02782626. url:
https://hal.archives-ouvertes.fr/hal-01740635 (cit. on p. 33).

Meinhardt, Tim, Michael Moeller, Caner Hazirbas, and Daniel Cremers (2017).
“Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse
Imaging Problems”. In: (ICCV) International Conference on Computer Vision,
pp. 1781–1790. arXiv: 1704.03488.

Parikh, Neal and Stephen Boyd (2014). “Proximal Algorithms”. In: Foundations
and Trends® in Optimization 1.3, pp. 127–239. issn: 2167-3888. doi:
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