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Introduction

Image acquisition model

o ideal image u:R? = [0,00)

e Measurements i:7?—1[0,255|NZ
i=g(Agp((uo@)*h+n))

o Geometric deformation ¢

blur kernel h

contrast change g

Simplified model

® x = Agzno,ny2(u * sinc) (ideal discrete image x € RN2)

e y=A(X)+n (degraded measurements)
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Introduction

Inverse Problems in Imaging

Estimate clean image x € RN
from noisy, degraded measurements y € R™.

Inverse
problem

Measurements y Ideal image x

Known degradation model (usually log-concave):

_ 1
Pyix (¥[%) oc e™" ) where F(x,y) = 5[ Ax—yl%. (1)
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Introduction

Inverse Problems in Imaging

Estimate clean image x € RN
from noisy, degraded measurements y € R™.
Known degradation model (usually log-concave):

_F(x 1
Pyix (¥ |x) oc e PO where Fxy) = 55lAx—yl* (1)

Variational /Bayesian Approach

Use image prior px (x) o< e ™ to compute estimator

Knap =arg max px|y (x|y)=arg mxin {F(x,y) + AR(x)} (2

)A(MMSEZBI’g mxin E [ ||X — X||2 ‘ Y = y:| (3)
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Bayesian & Variational Methods

Bayesian Estimators

Simplified model
o x = Ay sy (U *sinc) (ideal discrete image x € R")

o y=A(x)+n (degraded measurements)

[ll-posed A = need for regularization (prior knowledge)
o risk minimization (MMSE): min, E [ || X — x||? ’ Y=y]
@ posterior maximisation (MAP) maxy P[ X =x| Y =y]
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Bayesian & Variational Methods

Example of MAP estimation :

@ Observation model:
P[Y=y|X=x]=P[N=(y—A®x)] = Ce 2z VAR

@ Prior model
P[X =x| = C'e *RX)

@ Posterior (using Bayes Theorem):
P[X=x|Y=y]|=P[Y=y|X=x]P[X=x]

@ log-Posterior

1
—logP[X =x|Y=y]=E(x)=575ly — AX) [z +AR(x)+C"

F(x)
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Bayesian & Variational Methods

Bayesian Estimators

Simplified model

° x=Az \W)2(” * sinc) (ideal discrete image x € RV)

e y=A(x)+n (degraded measurements)

lll-posed A = need for regularization (prior knowledge)
o risk minimization (MMSE): miny E[ | X —x|? | Y =y ]
@ posterior maximisation (MAP) maxxP[ X =x| Y =y]

Special case n ~ N(0,02) and x ~ N(ju, ) are Gaussian

Both MMSE & MAP lead to the same closed form (Wiener filter):
R = (A*A+ 025 1) 1A%y + 025 1p)

WANING!! This is a very special case !!
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Bayesian & Variational Methods

Bayesian Estimators

posterior distribution

IMAP IMMSE
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Bayesian & Variational Methods

Bayesian Estimators

Noisy image (Poisson noise)
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Bayesian & Variational Methods

Choosing a prior for the clean image x

e Tikhonov regularization: (convex, smooth)
2
R(x) =D [IVxill3
i
@ Total Variation regularization: (convex, non-smooth)

R(x) = ZHVXin

@ Wavelet shrinkage: (convex, non-smooth)
R(x) = [[Wx]|1

e Patch based regularization (EPLL): (non-convex, smooth)
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Bayesian & Variational Methods

Choosing a prior for the clean image x

e Tikhonov regularization: (convex, smooth)
R(x) = 11Vl
i
@ Total Variation regularization: (convex, non-smooth)
R(x) =Y IIVxil2
i
o Wavelet shrinkage: (convex, non-smooth)

R(x) = IWx|

e Patch based regularization (EPLL): (non-convex, smooth)

e Neural network to learn R(x) ?
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Bayesian & Variational Methods

Convex Optimization Methods

We want to minimize E(x) = F(x) + R(x).

Gradient Descent Method

Xkt = xk — aVE(x¥)

Converges to stationary point x*
if E convex, VE is L — Lipschitz, and « € [0,2/L]

FBS / ISTA / PGD

Q vk =xk - aVR(x¥)
Q x* = prox,£(v¥) = arg min, 3 [|x — v¥||? + aF(x)

Converges to stationary point x*
if F, R convex, VR is L — Lipschitz, and « € [0,2/L]

Other splitting methods: HQS, DRS, ADMM, Chambolle-Pock
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Bayesian & Variational Methods

Convex Optimization Methods

We want to minimize E(x) = F(x) + R(x).

Gradient Descent Method
FBS / ISTA / PGD

Q@ vit = prox g (am* — xK)

@ x*t1 = prox, r(am* 4 v¥)

© Ul =Tk + L(vkHl — xk+1)

Other splitting methods: HQS, DRS, ADMM, Chambolle-Pock
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Bayesian & Variational Methods

Neural Networks for inverse problems: Two paradigms

@ Learning-based approach : find a sufficient number of image
pairs (x',y’) and train a neural network f; to invert A by
minimizing the empirical risk Y, |fa(y’) — x|3

no need to model A, n nor prior for x
X needs retraining if A or n change
@ Bayesian approach : Model separately
@ conditional probability P[Y =y | X = x|
(using physical model, calibration)

@ prior model P[X = x] (through NN learning)
© Use Bayes theorem to estimate x via MAP or MMSE
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Bayesian & Variational Methods

Using NNs to learn a prior for the clean image x

@ Neural network to learn R(x) ?

difficult to train !
properties of R ? (we need to minimise F(x) + AR(x) ')
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Bayesian & Variational Methods

Using NNs to learn a prior for the clean image x

@ Indirect (Plug & Play) approach :
o Train a neural network to solve a simpler (denoising) problem:

.1
D, :y > argmin 5 x ~ y[} + R(x)

e D, = prox,.p is the proximal operator of the regularizer ... or
VR(x) = f(Ds(x))
e To regularize the original problem use a splitting scheme and

e use D, instead of prox,op ... or
o use f(Ds(x)) instead of VR(x)
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Bayesian & Variational Methods

Plug & Play approach

A myriad of solutions have been proposed:

RED - Regularization by Denoising (REEHORST AND SCHNITER,
2019; ROMANO ET AL., 2017)

HQS - Half Quadratic Splitting (Crvan & YanG 2002; ZOrRAN
& WEIss 2012)

ADMM - Alternated Direction Method of Multipliers (Bovp,
2010; Ryu ET AL., 2019)

ISTA Proximal-gradient algorithm (Xu mr aL., 2020)

Does the scheme converge?

Does there exist a regularizer R such that prox,2g = D7
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RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
Plug & Play methods ADMM - Alternate Direction Method of Multipliers

RED - Regularisation by Denoising

RED constructs an explicit regularizer from a denoiser:

Rien(x) = %(x, X — Dy(x))

Theorem (RED's gradient

If the denoiser D, :
e is locally homogeneous (i.e. (14 ¢)D,(x) = D,((1+¢)x)) and
@ has symmetric Jacobian

then Rgrep's gradient is writes V Rrep(x) = x — Dy(x)
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RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
Plug & Play methods ADMM - Alternate Direction Method of Multipliers

RED - Regularisation by Denoising

Rien(x) = %(x, X — Dy(x))

Theorem (RED's gradient

If the denoiser D, :
e is locally homogeneous (i.e. (14 ¢)D,(x) = D,((1+¢)x)) and
@ has symmetric Jacobian

then Rrep's gradient is writes V Rrep(x) = x — Dy(x)

Collorary A gradient descent scheme (without splitting) is easy to
implement:
VE(x) = (VF + Id — D,)(x)
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RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
Plug & Play methods ADMM - Alternate Direction Method of Multipliers

RED - Regularisation by Denoising

Rrep(x) = %(x, x — D,(x))

Theorem (RED's gradient

If the denoiser D, :
e is locally homogeneous (i.e. (1+¢)D,(x) = Dy((1+¢)x)) and

@ has symmetric Jacobian

then Rrep's gradient is writes V Rrep(x) = x — Dy (x)

Lemma 1: If the denoiser D is locally homogeneous then [Jp(x)]x = D(x)
Lemma 2: Rgrep's gradient is VR(x) = x — 0.5D,(x) — 0.5[Jp(x)] "x

Lemma 3: If the denoiser D is locally homogeneous and has symmetric
Jacobian then VRgep(x) = x — D(x)
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RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
Plug & Play methods ADMM - Alternate Direction Method of Multipliers

RED - Regularisation by Denoising

Rrep(x) = %(x, x — D,(x))

Theorem (RED's gradient

If the denoiser D, :
e is locally homogeneous (i.e. (14 ¢)D,(x) = D,((1+¢)x)) and
@ has symmetric Jacobian

then Rrep's gradient is writes V Rrep(x) = x — Dy (x)

Reality check

[ TDT | MF | NLM | BM3D | TNRD | DnCNN |

|
= JfTH%__ [[ef(@) ][ 536e21 | 150 [ 0.250 [ 122 | 00378 | 0.0172 ]
f = 1 H2 TABLE I
f F AVERAGE JACOBIAN-SYMMETRY ERROR ON 16X 16 IMAGES
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RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
Plug & Play methods ADMM - Alternate Direction Method of Multipliers

Alternative to RED: Tweedie's formula

Tweedie's formula

If X ~ px, N~ N(0,02ld) and D,(y) =E[X | X+ N =y]
then

(DO' - Id)(x) = Uzv |Og(pX * gcf)(x)

Using the smooth prior R;(x) = — log(px * g»)
We want to minimize:

E(x) = F(x) + AR»(x)
And the gradient writes exactly:
A
VE(x) = (VF + 5(ld — Ds))(x)

This justifies the RED algorlthm (for = 1) for any denoiser that
is computed as an MMSE. For > £ 1 the above scaling is required.
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RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
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Tweedie's formula and posterior sampling

Tweedie's formula

|fXNpX,N~N(0,led) and D,(y) =E[X | X+ N=y]
then

(Dy — 1d)(x) = 0°V log(px * &) ()

Instead of maximizing 7(x) = px|y (x]y)
We can try to take samples Xy ~ 7
using the Langevin algorithm

Xir1 = Xi + 6V log m(Xi) + V262Z  with Z, ~ N(0, Id)

Using Tweedie's formula we can write

Vlogw(x) = (~VF + (D, ~ Id))(x)
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RED - Regularisation by Denoising
HQ Half Quadratic Splitting
Plug & Play methods ADMM - Alternate Direction Method of Multipliers

HQS - Half Quadratic Splitting

Instead of minimizing the original problem

E(x) = F(x) + AR(x)

we introduce an auxiliary variable v and we aim at solving the
equivalent constrained minimization problem :

min F(x) + AR(v) under the constraint x = v

X,V
The constraint can be added back to the energy (preceded by a
Lagrange multiplier 3)

Ex(x,v, 8) = F(x) + Bllx — v + AR(v)

We know that for 8 large enough joint minimization of Ej is
equivalent to minimizing E.
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RED - Regularisation by Denoising
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Plug & Play methods Al - Alternate Direction Method of Multipliers

HQS - Half Quadratic Splitting

Ex(x,v, 8) = F(x) + BlIx — v[|*> + AR(v)
To ensure that 3 is large enough we can use a continuation scheme:

arg min E(x) = ﬁlim arg min min E1(x, v, )
X —00 X v

Which inspires this alternating a minimization algorithm:
Initialization: x% v®, 3% > 0,v >0

For k=1, ... until convergence

xk = arg min, E;(x,vk71, Br_1). // inverse problem

vk = arg min, E;(x*, v, Bx_1). // regularization
B =81
End for

This method (which was proposed by Grvan & Yane (2002)) was notably
used by Zoran & Wriss (2012) to optimize their EPLL method.

©0 0000
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RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
Plug & Play methods ADMM - Alternate Direction Method of Multipliers

HQS Plug & Play

The fourth step in the HQS method ...
Q vk = argminy E;(x¥,v) = arg min, Bk|[x¥ — v||2 + R(v)
. can be interpreted as a denoising of x* with noise variance o7 = 1/(23%)

Replace step 4 by a trained denoiser D, :
@ Initialization: x°%,v0, 50
@ For k=1, ... until convergence
@ x¥ = argminy E1(x,vk™1). (inverse problem)
Q@ vk = D,, (x¥). (regularization)
Q@ Sk =p1
@ End for
Obs 1: In this scheme the denoiser needs to be trained for several values of o«

Obs 2: The convergence of the P&P HQS method has not been established.

We refer to it here as an historical introduction.
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RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
Plug & Play methods ADMM - Alternate Direction Method of Multipliers

Method of Multipliers

The HQS method requires 3 to increase during the iterations.

A more proper method which can ensure convergence with a fixed parameter is
the method of multipliers, which introduces a Lagrange multiplier w; for each
constraint x; = v;:

Ex(x,v,u) = F(x) +u’ (x — v) + AR(v)
We can show that
arg min min max Ex(x, v, u) = arg min E(x)
X v u X

This results in the following algorithm

@ Initialization: x°,v%,u® a > 0,
@ For k=1, ... until convergence
Q@ xK = argminy Ex(x, vk~ uk71). // inverse problem
@ vk = argmin, Ex(x*,v,uk"1). // regularization
@ uk =uf1 4 a(xk —vk) // gradient ascent on multiplier

@ End for
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RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
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ADMM - unscaled version

A more flexible version of this algorithm can be constructed, which:

@ has milder conditions on D and R

@ converges faster
It is obtained by adding the ¢2 norm of the constraint to build the augmented
Lagrangian:

E3(x,v,u) = F(x) +u” (x = v) +- AR(v) + Z[|x — v

The corrresponding alternated optimization (where o = p is the unscaled
version of ADMM:

Initialization: x%,v%, u®, p > 0,

For k=1, ... until convergence

2]

Q@ xK = argminy E3(x, vk~ uk1). // inverse problem
Q@ vk = argmin, E3(x*,v,u*"1). // regularization
@ uk =uf1 4 p(xk —vk) // gradient ascent on multiplier

@ End for
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ADMM - scaled version

ADMM is often written in a more convenient way as follows:
Defining the residual of the constraint as r = x — v
the " constraint” part of the Lagrangian can be rewritten
p P —2 Py—2
u r+ rl? = ||f+*UI| **II I* = Sllr+ull”™ =l

where u := %u is the scaled multiplier
With this modification the scaled ADMM that results from minimizing

Ea(x,v,0) = F(x) + pti” (x = v) + AR(v) + £ [x — v|?

and the algorithm becomes:
0

@ Initialization: x°,v% u% p > 0,

Q For k=1, ... unt|I convergence

Q@ xK = argminy E4(x, vk, uk1). // inverse problem
Q@ vk = argmin, E4(x,v,u*1). // regularization
Q@ uk=uk14 (xk - vk) : // gradient ascent on multiplier
© End for
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ADMM - scaled version

ADMM is often written in a more convenient way as follows:
Defining the residual of the constraint as r = x — v
the " constraint” part of the Lagrangian can be rewritten

1 1
T Sl = Gl Jul = 5l = Sl 4wl — 3

where U := %u is the scaled multiplier

With this modification the scaled ADMM that results from minimizing
Ea(x,v,) = F(x) + AR(v) + Zllx — v+ a* - Zjal”

or expanding the two minimization steps:

@ Initialization: x°,v%, @’ p > 0,

@ For k=1, ... until convergence

@ x* =argming F(x) + 2[]x — (V""" —@*"")||>. // prox on inverse problem
Q v =argmin, AR(V) + Z||(x* +u* 1) — v|%. // prox on regularization
Q uF=u"1+ (x—vH). // gradient ascent on multiplier
@ End for
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Plug & Play ADMM

As in the HQS case, step 4 in this algorithm is substituted by a NN-based
denoiser that was trained independently of this problem.
Instead of:

Q vk =argmin, AR(v) + £[|(x* + 1" 1) — v|2.
we write:

Q vk =D, (x" +u ).
where 0 = \/\/p

Theorem (Plug & Play ADMM

If D, is differentiable and its Jacobian Jp_ is symmetric with
eigenvalues in [0, 1], plus some mild technical conditions, then:

@ D, is the proximal operator of some energy function R.

@ Plug & Play ADMM converges to the global infimum of F(x)+ R(x)
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Plug & Play ADMM

Theorem (Plug & Play ADMM

If D, is differentiable and its Jacobian Jp_ is symmetric with
eigenvalues in [0, 1], plus some mild technical conditions, then:

@ D, is the proximal operator of some energy function R.

@ Plug & Play ADMM converges to the global infimum of F(x)+ R(x)

The proof of this result is based on a result of J.J. Morrau (1965):

A denoiser D is the proximal operator of an energy R, iff

5, and

@ D is non-expansive ||D(x) — D(v)||2 < [|x — v|

@ there exists p such that D(x) € Op(x)

Non-expansiveness results from the eigenvalue condition. And the
existence of ¢ from the symmetric Jacobian and Green's theorem.
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Plug & Play ADMM (bounded denoisers)

A slight variation of the P&P-ADMM algorithm allows it to converge
under more reasonable conditions.
The modification is similar to the continuation scheme used for HQS:

@ Initialization: x°,v%, @’ p° > 0,7 < 1,7 > 1

@ For k=1, ... until convergence

Q xF = argmin, F(x) + £|jx — (vk—1 — a2
// proximal descent on inverse problem

Q vk = D,«(x +u*"1) where o* A pk1

Q@ v =u"t 4+ (xk—vh) . // gradient ascent on multiplier
Q If Ay > nAy_1 then pk = ypk—1

@ Else pk = pk—t

Q Endif

© End for
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Plug & Play ADMM convergence for bounded denoisers

@ HI1: If F has bounded gradients, and

@ H2: D, is bounded ( there exists C > 0 such that for any image
x € RN LD, (x) — x|? < 62C)

Then the iterates 0% = (x¥, vk, u*) of Plug & Play ADMM converge to a
fixed point in /%> norm.

The convergence proof proceeds by showing that 8% = (x, vk, u¥) is a
Cauchy sequence by showing that

D(9k+1,9k) < C(Sk

for some C >0 and 6 € (0,1)

This is trivial in case 1 (else case when Ay < nAk_1).

Otherwise the update rule px+1 = vpx and boundedness of the denoiser
play an important role:

Indeed o < v~1/26%=1 and therefore || Dy« (xk +u*~1) — (xk +a*~1))|
also decreases because it is bounded.
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PnP-ADMM - Non-expansive residual

Previous assumptions:
@ D, contractive => too strong

@ 2D, — | contractive => too strong

Assumption A (e-Lipschitz residual):

I(Ds = 1)(x) = (Do = N(W)II* < 2[lx — yI?

Obs: D, can be trained to satisfy (A), via Residual Networks and
Spectral Normalization.
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PnP-ADMM - Non-expansive residual

RED - Regularisation by Denoising
HQS - Half Quadratic Splitting
ADMM - Alternate Direction Method of Multipliers

Assumption A (e-Lipschitz residual):

1(Ds = 1)(x) = (Do = NW)II* < €%Ix — ylI?

Idée de la preuve:

PnP ADMM has the same fixed points as PnP-DRS:

PnP-ADMM:
Q x = proxF/p(vk_1 —u).

Q vk =D, (x* +u* 1.
e ﬁk :kal +(Xk _vk) )

Andrés ALMANSA, Said LADJAL, Alasdair NEWSON

PnP-DRS

Q v = prox,_-/p(ﬁk_l).
Q@ x“ =D, (2vk —u ).

Q =01+ (xF —vh).
multiplier
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PnP-ADMM - Non-expansive residual

Assumption A (e-Lipschitz residual):

I(Ds = 1)(x) = (D = NW)I? < €%|lx — y|?

Idée de la preuve:

PnP ADMM has the same fixed points as PnP-DRS:

U = T(U ") avec T =3/ — (2D, — I)(2 proxg, —)

Objective: Show that T is non-expansive => convergent sequence.
If:

@ Assumption A holds
@ F is p-strongly convex
@ <1

2
0 p< M(1+a:25)

Then T is contractive and both PnP-DRS and PnP-ADMM converge.
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PnP-ISTA

If D, is an MMSE denoiser with a non-degenerate prior px
and VF is L-Lipschitz

then the PnP-ISTA scheme with o € [0,1/L] converges to a
stationary point of F + R*

where D, = prox g+

O vk =xk —aVF(xK)
Q@ x 1 = prox, g« (vk) = D, (v¥)

No contractivity condition on D,
No strongly convex condition on F
Proof: Based on (GrisonvaL, 2011)

Andrés ALMANSA, Said AL, Alasdair NEWSON Lecture # 3: Plug & play methods



atic Spl g
Plug & Play methods ADMM - Alternate Direction Method of Multipliers

Conclusion

@ RED requires either :
o locally homogeneous denoiser with symmetric Jacobian
(REEHORST AND SCHNITER, 2019), OR
o careful parameter choice and denoiser with non-expansive
residual (Tweedie interpretation)
@ Plug & Play ADMM (adaptive p) requires bounded denoiser
o difficult to achieve for small o.
o Convergence is forced by decreasing p artificially
@ Plug & Play ADMM (fixed p) requires either
o non-expansive denoiser (Wavelet Thresholding, symmetrized
NLM (SreEHARI ET AL, 2[]1(3)), or
o denoiser with non-expansive residual ((Rvu et AL.. 2019)
retrains denoiser to satisfy this condition) and strongly convex
data-fitting.
@ Plug & Play ISTA (Xu ur aL., 2020) converges for ANY MMSE
denoiser.
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Reading Guide

The Plug & Play methods we shall experiment with in the lab session are
discussed here:

@ PnP ADMM (Rvu e1 AL., 2019)
@ PnP ISTA (Xu eT AL, 2020)

A critical review of the RED algorithm is provided by (Rernorst anp
ScuniTer, 2019), and its Tweedie interpretation shall appear soon.

For a review of splitting methods in convex optimization see Emilie
Chouzenoux's course or (PAriki AND Boyp, 2014).

For a more in-depth review of the theory of monotone operators behind
the proofs of PnP ADMM and PnP ISTA see (Rvu axp Bovp, 2016) or the
more comprehensive monograph (Bauscuke AND COMBETTES, 2017).

The bibliography below provides the doi link (official version). If you do not have access to the original (via your

university library’s online subscriptions) you can download the arXiv or HAL preprint or the PDF link to the

author's page.
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