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Inverse Problems in Imaging

Estimate clean image x € RY
from noisy, degraded measurements y € R™.

Inverse
problem

Measurements y Ideal image x
Known degradation model (usually log-concave):

[Ax —y|?. (1)

1
Py|x (¥ | x) o e FOY) where F(x,y) = ﬁ‘
o
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Inverse Problems in Imaging

Estimate clean image x € RY
from noisy, degraded measurements y € R™.
Known degradation model (usually log-concave):

— 1
prix (v %) oc e FE) where F(x,y) = 55 Ax — y|%. (1)

Variational /Bayesian Approach

Use image prior px (x) o< e *R™) to compute estimator
Xurr =arg max px|y (x| y) =argmin {F(x, y) + AR(x)} (2)
)?MMSE:arg minE |: HX - X||2 ‘ Y = y] (3)
X
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Inverse Problems in Imaging

iy 1
Pyix (¥ [ x) o e”FOY) where  F(x,y) = o 5[l Ax —y|?. (1)

Variational /Bayesian Approach

Use image prior px (x) o e ™ to compute estimator
Xuar =arg max px|y (x| y) =argmin {F(x,y) + AR(x)} ()
& X
Xnmse =arg min £ |: HX — X||2 ’ Y = y] (3)

Common explicit priors
@ Total Variation (CHAMBOLLE, 2004; LOUCHET AND MOISAN, 2013;
PEREYRA, 2016; RUDIN ET AL., 1992)
@ Gaussian Mixtures (TEODORO ET AL., 2018; YU ET AL., 2011;
ZORAN AND WEISS, 2011)
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Neural Networks for inverse problems:
Two paradigms

nu(,\lnmgc

>

@ Agnostic approach : find a sufficient number of image pairs
(x',y") and train a neural network fy to invert A by
minimizing the empirical risk >, ||fa(y’) — x'[|3

no need to model A, n nor prior for x
X needs retraining if A or n change
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Neural Networks for inverse problems:

Two paradigms

ature Encoder s Feature Decoder
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@ Agnostic approach : find a sufficient number of image pairs
(x',y") and train a neural network fy to invert A by
minimizing the empirical risk >, ||fa(y’) — x'[|3

no need to model A, n nor prior for x
X needs retraining if A or n change

e Decoupled (plug & play) approach : Model separately
© conditional density pyx (y|x)

(using physical model, calibration)
@ prior model px (x) (through NN learning)
© Use Bayes theorem to estimate x via MAP or MMSE
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Neural Networks for inverse problems:

Two paradigms

@ Agnostic approach : find a sufficient number of image pairs
(x',y") and train a neural network fy to invert A by
minimizing the empirical risk >, ||fa(y’) — x'[|3

no need to model A, n nor prior for x
X needs retraining if A or n change
@ Decoupled (plug & play) approach : Model separately

© conditional density pyx (y|x)

(using physical model, calibration)
@ prior model px (x) (through NN learning)
© Use Bayes theorem to estimate x via MAP or MMSE

uses all available modeling information
train once, use for many inverse problems
difficult to learn px (x) directly
Non-convex optimization

Andrés Almansa Solving Inverse Problems in Imaging



Introduction Inverse problems in Imaging
Implicitly decoupled methods
Explicitly decoupled methods

Neural Networks for inverse problems:

Implicitly decoupled approach

Solve the optimization problem
Xyap =arg max px|y (x|y)=argmin {F(x,y) + AR(x)}
X X

via ADMM splitting (Rvu &1 aL., 2019)
© Vi1 = argmin, R(v) + 5 |v — (xi — uy)
@ xi1 = argming F(x,y) + 2% — (viers — we)|P
Q ui1 = U+ Vip1 — Xpq1

R is unknown but we can use a train a neural network to
approximate the §-denoising problem in step 1:

12

1
Ds(x) = argvmin R(v) + ﬁHv — %
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Neural Networks for inverse problems:

Implicitly decoupled approach

Solve the optimization problem via ADMM splitting
Xuar =argmax px|y (x| y)=argmin {F(x,y) + AR(x)}
X X
R is unknown but a NN approximates its proximal operator:

lv — %||?

1
Ds(x) = argvmin R(v) + 552

Challenges

@ NN training produces an MMSE rather than a MAP estimator
for D5

o Convergence guarantees
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Neural Networks for inverse problems:
Implicitly decoupled approach

Solve the optimization problem via ADMM splitting (Rvu &1 AL., 2019)

Xuap =arg max px|y (x| y)=argmin {F(x,y) + AR(x)}

Assumption (A)
@ / Ds — | is L-Lipschitz with L € (0,1)
@ X F(-,y) is u-strongly convex

QO X)\< 0'2}1(1+LL*2L2) 0
L—1—

\

Under assumption A, the Plug & Play ADMM algorithm converges
to a critical point.
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Explicitly decoupled approach (MAP-x):
How to use neural networks to learn the prior px (x) 7

Generative Adversarial Networks (GANs) (Ariovsky anp BorTou,
2017; GOODFELLOW ET AL., 2014)

A
Learn a generator function G that maps ‘
z ~ N(0, Id) 2 Generator p
X
to G(z)
x = G(z) ~ px z~ N (0,1d)
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Explicitly decoupled approach (MAP-x):
How to use neural networks to learn the prior px (x) 7

Generative Adversarial Networks (GANs) (Ariovsky anp Borrou,
2017; GOODFELLOW ET AL., 2014)

A
Learn a generator function G that maps ‘
z~ N(0,1d) 2 Generator ,
X
to G(z)
x = G(z) ~ px z ~N(0,1d)

MAP-X Following PAPAMAKARIOS ET AL. (2019, secTiON 5), the push-forward
measure px = Gfipz can be developed as

pz (G7*(x))

P ()= e sie ()

-
s (967 (06
0z 0z
M= {x: 3z, x =G(2)}

Irm(x)

where
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Explicitly decoupled approach (MAP-x):
How to use neural networks to learn the prior px (x) 7

Generative Adversarial Networks (GANs) (Arsovsky anNDp Borrou,
2017; GOODFELLOW ET AL., 2014) Learn a generator function G that maps

z~N(0,/d) to x=G(z)~ px

MAP-x Following PapavaKARIOS ET AL. (2019, sEcTiON 5), the push-forward measure
px = Gfipz can be developed as

pz (G1(x)) 5
det S(G—1(x))

= (5) ()
M={x:3z, x=G(z)}

x-optimization required to obtain Xy p becomes intractable due to:

Mm(x)

px (x) =

where

@ computation of S and det S,
@ inversion of G, and
@ hard constraint x € M

Andrés Almansa Solving Inverse Problems in Imaging



Introduction Inverse problems in Imaging
Implicitly decoupled methods
Explicitly decoupled methods

Explicitly decoupled approach (MAP-Z):

Instead of solving the x-optimisation problem:
Xuap =arg max py | x (¥ | x) px (x) =argmin {F(x,y) + R(x)}
X X
BORA ET AL. (2017) propose to optimize over z

2 = arg max {pyix (¥ |G(2)) pz (2)}

= arg min {F(G(z),y) + ;|2|2}

)?Z—MAP = G(f)

Xz_map (# Xuap) but it maximizes the latent posterior:
Xzvar = G (arg max {pZ|Y (z] y)})
V4
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Explicitly decoupled approach (MAP-Z):

Xz—map (# Xuap) maximizes the latent posterior:
Xz—var = G <arg max {pZ|Y (Z ‘ y)})
V4

el )

z

Challenges
@ Nonconvex optimization using gradient descent

@ may get stuck in spurious local minima

Common solution: Splitting 4+ continuation scheme
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MAP-Zz splitting and continuation scheme.

o L 1
o = argminmin { F(x.y) + 5 x - G + 3 21}

J1,8(x,2)

Ruwoz = lim Rs.
B—o0

Algorithm 1.1 MAP-z splitting
Require: Measurements y, Initial condition g
Ensure: £ =G (arg max, pzly (z| y))

1: for k := 0 to kpax do

2: B = Bk

3:  for n := 0 to maxiter do

4 Zpy1 i= argmin, Jy g(xy, 2) // Nonconvex
5: Tpq1 1= argming Jy g(x, zn41) // Quadratic
6: end for

T Lo = Tpg

8: end for

9: return T,

Non-convex step 4: Use a local quadratic approximation (VAE encoder) ...
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VAEs and Joint Posterior

Generative Adversarial Networks (GANSs) (GOODFELLOW ET AL., 2014)

A
Learn a generator function G that maps ‘
z ~ N(0, Id) 2 Generator ,
X
to G(z)
x = G(z) ~ px z ~ N(0,1d)
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VAEs and Joint Posterior

Generative Adversarial Networks (GANSs) (GOODFELLOW ET AL., 2014)

A
Learn a generator function G that maps ‘
z~N(0,Id) 2 Generator ,
X
to G(z)
x = G(z) ~ px z ~ N(0,1d)
Variational AutoEncoders (VAEs) (KinGMA AND WELLING, 2013)
A
Encoder Decoder /
X z X
94(2x) po(x|2)
z ~ N(0, Id)
Generative model: px|z (x| z) = po(x|z) = N(x; po(z), vId)
Approximate inverse: pzix (2| x) = qs(z]x) = N(z; pe(x), Le(x))
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Proposed Method

VAEs and Joint Posterior

Variational AutoEncoders (VAEs) (KinGMA AND WELLING, 2013)

Encoder
g (2[x)

Decoder
po(x|z)

z ~ N(0, Id)

Generative model:

pxiz (x| 2) = po(x|z) = N(x; po(2), vId)
Approximate inverse:

pzix (2] x) & qo(2|x) = N(z; ps(x), Zo(x))
Learning: Maximize the averaged Evidence Lower BOund (ELBO) for x € D

Lo,6(x) = Eqy (210 [log pa(x|2)] — KL(qs(2|x) || pz (2)) < log pa(x).
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VAEs and Joint Posterior

Variational AutoEncoders (VAEs) (Kincva AND WELLING, 2013)

Generative model: px|z (x| z) = po(x]|2) = N(x; po(z), vId)
Joint density: px,z (x,2) = po(x|2) pz (2)
Approximate inverse: pzix (2| x) = qs(z]x) = N(z; pe(x), Te(x))
Approximate joint density: Px,z(x,2) := qe(z|x) px (x) = px,z (x,2)
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VAEs and Joint Posterior

Variational AutoEncoders (VAEs) (KinGva AND WELLING, 2013)

Generative model: px|z (x| z) = po(x|2) = N(x; po(z), vId)
Joint density: px.z (x,2) = po(x|2) pz (2)
Approximate inverse: pzix (2| x) = qo(z]x) = N(z; pe(x), Le(x))
Approximate joint density: Px,z(x,2) := qe(z|x) px (x) = px,z (x,2)

Joint Posterior: (log-quadratic in x)

Ji(x,z) == —log px,z|y (x,2|y)
— —log pyix.z (¥ | %,2) pa(x | 2)pz (2)

Flxoy) + 5l = mo @) 45 20

N —
Hg(x,z)

(4)
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VAEs and Joint Posterior

Variational AutoEncoders (VAEs) (KinGMA AND WELLING, 2013)

Generative model: px|z (x| z) = po(x|z) = N(x; po(z), vId)
Joint density: px,z (x,2) = po(x|2) pz (2)
Approximate inverse: pzix (2| x) = qs(z]x) = N(z; pe(x), Te(x))
Approximate joint density: Px,z(x,2) := qe(z|x) px (x) = px,z (x,2)

Joint Posterior: (log-quadratic in x)

Ji(x,z) ;== —logpx,z|v (x,2|y)
= —log py|x,z (¥ | x, 2) pa(x | z)pz (z)

Flxoy) + gl = mo @) +5 21
Ho (x,2)
Approximate Joint Posterior: (log-quadratic in z)
h(x,z) = —log py|x,z (¥ x,2) gs(z | x) px (x)
=F(x,y)+ %HEQW(X)(Z — po(X))|I” + C(x) —log px (x) . (5)

Kp(x,2)
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Joint Posterior Maximization - Alternate Convex Search

Algorithm 2.1 Joint posterior maximization - exact case

Require: Measurements y, Autoencoder parameters 6, ¢, Initial
condition xg
Ensure: &, 2 = argmax, , px,z|y (Z,2|y)

1: for n := 0 to maxiter do

2t Zpgp = argmin, Jo(xn, 2) = pe(x,) // Quadratic approx
3 Xpq = argming J1(®, 2n41) // Quadratic
4: end for

5: return T,4y1, 2p+1

Proposition

If the encoder approximation is exact (J> = Ji) then
@ J; is biconvex, and following Gorski ET AL. (2007):
@ Algorithm 2.1 is an Alternate Convex Search

@ Algorithm 2.1 converges to a critical point
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JPMAP - Accuracy of encoder approximation

Contour plots of —log pz|x (z]x) and —log g4(z|x) for a fixed x
and for a random 2D subspace in the z domain.
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JPMAP - Accuracy of encoder approximation

(a) Encoder approximation (b) Decoded exact optimum (c) Decoded approx. optimum (d) Difference (b)-(c)

Figure 1. Encoder approximation: (a) Contour plots of —log pe(x|2) + 3 ||2||* and — log g, (2|@) for a fixed @ and for a random 2D
subspace in the z domain (the plot shows iZEL/Z around p1). Observe the relatively small gap between the true posterior pg(z|x) and
its variational approximation g, (z|@). This figure shows some evidence of partial z-convexity of J; around the minimum of .Jz, but it
does not show how far is z* from z2. (b) Decoded exact optimum @1 = f19 (arg maxz pg(z\z)f:%”"‘z). (c) Decoded approximate

optimum &2 = pe (arg max. gy (2|x)). (d) Difference betweeen (b) and (c)
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Joint Posterior Maximization - approximate case

Algorithm 2.2 Joint posterior maximization - approximate case

Require: Measurements y, Autoencoder parameters 6, ¢, Initial
conditions xq, 2o
Ensure: &, 2 = argmax, , px z|y (%, 2|y)
1: for n := 0 to maxiter do

2. zli=argmin, Jo(xn, 2) = pg(x,) // Quadratic approx
3:  22:=GD, Ji(x,, z), starting from z = 2!

4. 23 :=GD, Ji(xn, 2), starting from z = z,

5: forz-ltoSdo

6: x' := argmin,, J (x, 2°) // Quadratic
7. end for

8 i = argmingg o 3) Ji(zt, %)

9: (anrl; zn+1) ($1 ) zl*)

10: end for

11: return x,41, 2p+1
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Joint Posterior Maximization - approximate case

(faster version)

Algorithm 2.3 Joint posterior maximization - approximate ¢

Require: Measurements y, Autoencoder parameters 6, ¢, Initial condition g, iterations
n1 < Ny < Ninax

Ensure: &,z = argmax, . px,z|y (@, 2|y)

1: for n:= 0 to nyax do

2:  done := FALSE

3. if n < n; then

4 rgmin, Ja(@,, z) = pe(e,) // Quadratic approx

5 T arg ming, Jy (z, 2') // Quadratic
6: if Ji(z',2") < Ji(x,, 2,) then
. i* = // Faster alternative while J, is good enough
done
9 end if
10:  end if
11:  if not done and n < ny then
12 2! = argmin, Jo(xy, 2) = pg(zn) // Quadratic approx
13: 2 := GD, Ji(@n, 2), starting from z = 2!
14 r? := arg min,, Ji (z, 22) // Quadratic
15: if Ji(2?,2%) < Ji(2n, 2,) then
16 =2 // Ja init is good enough
17: done := TRUE
18 end if
19:  end if
20:  if not done then
21: 2% := GD, Ji(zy, 2), starting from z = z,
22: 2% := argmin,, Ji (z, 2%) // Quadratic
23: i 3
24:  end if
25 (Tpg1.zns1) = (2, 20)
26: end for

27: return x, 1, 2,41
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JPMAP - Effectivenes of the encoder initialization

Trajectories of GD, J1(xo, z), starting from z = z
Thick blue curve: zyg = argmin, J(xo,z) = pg(x0)
Thin curves: random initializations zyp ~ N(0, Id)
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JPMAP - Convergence

If we use ELU activations then the following assumption is verified:

Assumption (2)

Ji(+, z) is convex and admits a minimizer for any z. Moreover, J;
is coercive and continuously differentiable.

Proposition (Convergence of Algorithm 2.3)

Let {(xn,zn)} be a sequence generated by Algorithm 2.3. Under
Assumption 2 we have that:

@ The sequence {J1(xn,zn)} converges monotonically when
n— 0.

@ The sequence {(xn,z,)} has at least one accumulation point.

@ All accumulation points of {(xn, z,)} are stationary points of
J1 and they all have the same function value.
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Denoising Criterion to train VAEs

Variational AutoEncoders (VAEs) (Kincuva AND WELLING, 2013)

Decoder
po(x|z)

Encoder
gy (2[x)

Learning: Maximize the averaged Evidence Lower BOund (ELBO) for x € D

Lo,5(x) = Eq,(z1x) [log po(x|2)] — KL(q(z|x) || pz (2)) < log po(x).
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Denoising Criterion to train VAEs

Variational AutoEncoders (VAEs) (Kincuva AND WELLING, 2013)

Decoder
po(x|z)

Encoder
g (2[x)

Learning: Maximize the averaged Evidence Lower BOund (ELBO) for x € D

Lo,5(x) = Eq,(z1x) [log po(x|2)] — KL(qy(z|x) || pz (2)) < log pe(x).

Problem: pg(x) only trained for x € D or x € M = ps(R™).
But: Step 2 in the algorithm evaluates py(x,) for degraded x, ¢ M
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Denoising Criterion to train VAEs

Variational AutoEncoders (VAEs) (Kincva AND WELLING, 2013)

Decoder
po(x|z)

Encoder
g (2[x)

Learning: Maximize the averaged Evidence Lower BOund (ELBO) for x € D
Lo,6(x) = Eqy (210 [log pa(x|2)] — KL(qs(2|x) || pz (2)) < log po(x).

Denoising criterion: Train on D but still require po(pe(X)) = x.

ﬁ:{)?:X-‘y—UDVAE&‘ : x €D and é‘NN(O,/)}
Maximize the denoising ELBO

Lo.6(x) = Bz [Eq, i llog po(x12)] — KL(as(21%) | pz (2))]
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Denoising criterion does not degrade generative model

- csGM - csGMm
S ear T - JPmAP
: [ M il
w + u MAP P |
b 2 1T

(a) Denoising (b) Compressed Sensing (c) Inpainting

Figure 1. FEvaluating the quality of the generative model as a function of opvag. On (a) Denoising
(Gaussian noise o = 150), (b) Compressed Sensing (~ 10.2% measurements, noise o = 10) and (c) Inpainting
(80% of missing pizels, noise o = 10). Results of both algorithms are computed on a batch of 50 images and
initialising on ground truth @ (for CSGM we use zo = po(x™)).
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Optimal value of opyae

- CsGM
—f~ PMAP (with Cont. Scheme)

M o ey HrT—1 T

DVAE sigma DVAE sigma DVAE sig

s [ jﬁ | o M T e e s ol || H k+‘[
S ot ST 110 SR 1
i e - |

—E- PMAP (with Cont. Scheme)

MSE mean

(a) Denoising (b) Compressed Sensing (c) Inpainting

Figure 2. Evaluating the effectiveness of JPMAP vs CGSM as a function of opvag (same setup of Figure 1).
Without a denoising criterion opvag = 0 the JPMAP algorithm may provide wrong guesses z' when applying
the encoder in step 2 of Algorithm 2.2. For opvae > 0 however, the alternating minimization algorithm can
benefit from the robust initialization heuristics provided by the encoder, and it consistently converges to a better
local optimum than the simple gradient descent in CSGM.
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MAP-z as the limit case for 5 — oo

Two options for MAP-z estimator instead of the joint MAP-x-z
@ CSGM - gradient descent, may be stuck in local minima
@ Use Algorithm 2.3 to solve a series of joint MAP-x-z problems
with increasing values of g = % — 00 as suggested in
Algorithm 1.1.
Stopping criterion: Inequality constrained problem

. 1
argmin  F(x,y) + > |z*.
x,2:[G(2)—x|?<e 2

The corresponding Lagrangian form is
. 1 n
maxmin F(x.y) + 5212+ 5 (|G(2) x> <) (6)

We use the exponential multiplier method (Tseng and Bertsekas,
1993) to guide the search for the optimal value of 3 (see
Algorithm 2.4)
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MAP-z as the limit case for 5 — oo

Algorithm 2.4 MAP-z as the limit of joint MAP-z-z.

Require: Measurements y, Tolerance ¢, Rate p > 0, Initial Sy, Initial xo, Iterations 0 <
n1 < N2 < Nmax

Ensure: argmin, . |g(x)—a|2<- F (@, 4) + 3112]*

H /3 = /30

20, 20 := Algorithm 2.3 starting from @ = xo with 3,71, na, Nmax.

. converged := FALSE

k=0

: while not converged do

2+ 2k .= Algorithm 2.3 starting from & = a* with § and ny =np =0

C = HG(Zk/’+1) _ wk+1H2 _c

B = Bexp(pC)

converged := (C < 0)

ki=k+1

: end while

koo

— =
e N A A o

k

—
)

: return =
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Variational AutoEncoder Priors

Joint Posterior Maximization with AutoEncoding Prior
Denoising Criterion and Continuation Scheme

Proposed Method

MAP-z as the limit case

10° 4 —
&
& Qo
=102 4 '
10\ _(u](h)(; )(d)
0 20 40 60 8 100 120 0 20 40 60 80 100 120

Iteration k Iteration k

Figure 5. Evolution of Algorithm 2.4. In this inpainting example, JPMAP starts with the initialization
in (a). During first iterations (b) — (d) where By is small

) and G(zi) start loosely approaching each other
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Experiments

Denoising experiments (MNIST)

22 - - M e
- == JPMAP (6 = 1/7%) 0.06 .
JPMAP (x=10) ~E- IPMAP (8
=%~ JPMAP (a=5)
JPMAP (a=1)

=3~ JPMAP (a=5)
JPMAP (a=1)

SEM)
b
+ SEM)

PSNR (Mean
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Experiments

Compressed sensing experimen

=+ csaM
-* == JPMAP (6 =

/)
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= 0.05-
JPMAP (a=1)

= 0.04 -
] T Ed
=
~ 0.03 -

Z = csaM 0

73] == JPMAP (8 = 1/7%) =

A~ JPMAP (a=10) — 0.02 -

16 - = JPMAP (a=5) o
JPMAP (a=1)
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Experiments

Inpainting experiments (MNIST)

- CsGM
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Experiments

Denoising experiment: ¢ = 110/255

JPMAP (8 =1/7") |8
JPMAP (o = 10)
JPMAP (a = 5)

JPMAP (a = 1)
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Experiments
Compressed sensing experiment: m = 140 random
measurements

o
CSGM
JPMAP (8 =1/
JPMAP (o = 10)

JPMAP (v = 5)

R G
VIV VW

Y o4HARLlL2
7 £ 39 %89 R4
48933 62
48433 62
Y B84YBQF b2
Y8433 b2

JPMAP (e = 1)
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CSGM
JPMAP (8 = 1/4?)
JPMAP (o = 10)
JPMAP (o = 5)

JPMAP (a = 1)
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Experiments

Inpainting experiment: 80% missing pixels o = 10/255 (CelebA)

From top to bottom: original image x*, corrupted image X,
restored by CSGM, restored image X by our framework.
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Experiments

Reconstructions pg(pe(x)) (even columns) for some test samples
x (odd columns), showing the over-regularization of data manifold
imposed by the trained VAE. As a consequence, —log pz|y (z]y)

a aalialliaa a Al a
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Experiments

Conclusion

@ JPMAP avoids spurious local minima thanks to
e Quasi bi-convex optimization
e Encoder initialization
e Denoising VAE
e Splitting and continuation scheme
@ JPMAP converges for all quadratic problems and
regularisation parameters (unlike denoiser-based PnP approaches
(Ryu BT AL., 2019) that are more restrictive)
o Constraints

o Fixed size
o VAEs lag behind GANs

Andrés Almansa Solving Inverse Problems in Imaging



Experiments

Future work

@ Use a more powerful VAE like NVAE (VaupaT anp KauTz,

2020) or TwoStageVAE (Dar anp Wirr, 2019)
e Patch-based JPMAP (EPLL-like)

@ Use ADMM with non-linear constraints instead of
continuation scheme for MAP — z

o Generalize the scheme to perform posterior sampling

Andrés Almansa Solving Inverse Problems in Imaging



Preprint and code available here
http://up5.fr/jpmap

Thank you for your attention!

Questions? Comments
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http://up5.fr/jpmap
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