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Inverse Problems in Imaging

Estimate clean image x ∈ Rd

from noisy, degraded measurements y ∈ Rm.

Inverse
problem

Measurements y Ideal image x
.

Known degradation model (usually log-concave):

pY |X (y | x) ∝ e−F (x ,y) where F (x , y) =
1

2σ2
‖Ax − y‖2. (1)
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Inverse Problems in Imaging

Estimate clean image x ∈ Rd

from noisy, degraded measurements y ∈ Rm.
Known degradation model (usually log-concave):

pY |X (y | x) ∝ e−F (x ,y) where F (x , y) =
1

2σ2
‖Ax − y‖2. (1)

Variational/Bayesian Approach

Use image prior pX (x) ∝ e−λR(x) to compute estimator

x̂map=argmax
x

pX |Y (x | y)=argmin
x
{F (x , y) + λR(x)} (2)

x̂mmse=argmin
x

E
[
‖X − x‖2

∣∣∣ Y = y
]

(3)
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Inverse Problems in Imaging

pY |X (y | x) ∝ e−F (x ,y) where F (x , y) =
1

2σ2
‖Ax − y‖2. (1)

Variational/Bayesian Approach

Use image prior pX (x) ∝ e−λR(x) to compute estimator

x̂map=argmax
x

pX |Y (x | y)=argmin
x
{F (x , y) + λR(x)} (2)

x̂mmse=argmin
x

E
[
‖X − x‖2

∣∣∣ Y = y
]

(3)

Common explicit priors

Total Variation (Chambolle, 2004; Louchet and Moisan, 2013;

Pereyra, 2016; Rudin et al., 1992)

Gaussian Mixtures (Teodoro et al., 2018; Yu et al., 2011;

Zoran and Weiss, 2011)
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Two paradigms

saddle points assuming the initial solution is randomly
selected [61]. Therefore, converging to a saddle point is
extremely unlikely.

It has been shown in [62] that the denoiser autoencoder
can be regarded as an approximately orthogonal projection
of the noisy input yy to the manifold of noiseless images.
Therefore, as shown in the above parts 2, Algorithm 1 with
the mapping function fð"Þ defined by the DCNN denoiser
in a loose sense converges to a local minimizer, based on the
above analysis.

4 DENOISING PRIOR DRIVEN DEEP NEURAL

NETWORK

In general, Algorithm 1 requires many iterations to converge
and is computationally expensive. Moreover, the parameters
and the denoiser cannot be jointly optimized in an end-to-end
training manner. To address these issue, here we propose to
unfold the Algorithm 1 into a deep network of the architecture
shown in Fig. 1a. The network exactly executes T iterations of
Algorithm 1. The input degraded image yy 2 Rny first goes
through a linear layer parameterized by the degradation
matrix A 2 Rny$mx for an initial estimate xxð0Þ. xxð0Þ is then fed
into the denoiseing module and the linear layer parameter-
ized bymatrix !A 2 Rmx$mx . Thedenoised signal vvð1Þ weighted
by d1;1 is then added with the output of the linear layer !A

and A>yy weighted by d1;2 via a shortcut connection to obtain
the updated xxð1Þ. The structure of the denoising module is
shown in Fig. 1b. Such a process is repeated T times. In
our implementation, T ¼ 6 was always used. Instead of
using fixed weights, all the weights dt;1, dt;2, t ¼ 1; 2; " " " ; T
involved in the T recurrent stages can be discriminatively
learned through end-to-end training. Regarding the denoising
module, as we are using a DCNN-based denoiser that
contains a large number of parameters, we enforce all the
denoising modules to share the same parameters to avoid
over-fitting.

The linear layers A> and !A are also trainable for a typical

degradation matrix A. For image denoising, A ¼ A> ¼ I,
and !A also reduces to a weighted identity matrix !A ¼ !I,

where ! ¼ 1& dð1 þ hÞ. For image deblurring, the layer A>

can be simply implemented with a convolutional layer. The
layer !A ¼ aI& dA>A can also be computed efficiently by
convolutional operations. The weight a and filters corre-
spond to A> and A can also be discriminatively learned. For
image super-resolution, two types of degradation operators
are considered: the Gaussian downsampling and the bicubic
downsampling. For Gaussian downsampling, A ¼ DH,
where H and D denote the Gaussian blur matrix and the
downsampling matrix, respectively. In this case, the layer
A> ¼ H>D> corresponds to first upsample the input LR
image by zero-padding and then convolute the upsampled
image with a filter. Layer !A can also be efficiently computed
with convolution, downsampling and upsampling opera-
tions. All convolutional filters involved in these operations
can be discriminatively learned. For bicubic downsampling,
we simply use the bicubic interpolator function with scaling
factor s and 1=s (s ¼ 2; 3; 4) to implement the matrix-vector
multiplications A>yy and Axx, respectively.

4.1 The DCNN Denoiser
Inspired by the recent advances on semantical segmentation
[50] and object segmentation [63], the architecture of the
denoising network is illustrated in Fig. 1b. Note that other
more powerful denoising network can also be used in the
proposed IR framework. Similar to the U-net [64] and the
sharpMask net [63], the denoising network contains two
parts: the feature extraction and image reconstruction parts.
In the feature extraction part, there are a series of convolu-
tional layers followed by downsampling layers to reduce
the spatial resolution of the feature maps. The downsam-
pling layer helps increasing the receipt field of the neurons.
The convolutional layers are grouped into L feature encod-
ing blocks (L ¼ 6 in our implementation), as shown by the
gray arrows in Fig. 1b. As shown in Fig. 1c, each feature
encoding block contains four convolutional layers with
ReLU nonlinearity and 3$ 3 kernels, each of which gener-
ates 64-channel feature maps. The first four encoding blocks
are followed by a downsampling layer to reduce the spatial

Fig. 1. Architectures of the proposed deep network for image restoration. (a) The overall architecture of the proposed deep neural network. (b) The
architecture of the plugged DCNN-based denoiser. (c) The architecture of the feature extraction (left) and the reconstruction (right)
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.

Agnostic approach : find a sufficient number of image pairs
(x i , y i ) and train a neural network fθ to invert A by
minimizing the empirical risk

∑
i ‖fθ(y i )− x i‖2

2

3 no need to model A, n nor prior for x
7 needs retraining if A or n change

Decoupled (plug & play) approach : Model separately
1 conditional density pY |X (y | x)

(using physical model, calibration)
2 prior model pX (x) (through NN learning)
3 Use Bayes theorem to estimate x via MAP or MMSE
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It has been shown in [62] that the denoiser autoencoder
can be regarded as an approximately orthogonal projection
of the noisy input yy to the manifold of noiseless images.
Therefore, as shown in the above parts 2, Algorithm 1 with
the mapping function fð"Þ defined by the DCNN denoiser
in a loose sense converges to a local minimizer, based on the
above analysis.

4 DENOISING PRIOR DRIVEN DEEP NEURAL

NETWORK

In general, Algorithm 1 requires many iterations to converge
and is computationally expensive. Moreover, the parameters
and the denoiser cannot be jointly optimized in an end-to-end
training manner. To address these issue, here we propose to
unfold the Algorithm 1 into a deep network of the architecture
shown in Fig. 1a. The network exactly executes T iterations of
Algorithm 1. The input degraded image yy 2 Rny first goes
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ized bymatrix !A 2 Rmx$mx . Thedenoised signal vvð1Þ weighted
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module, as we are using a DCNN-based denoiser that
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and !A also reduces to a weighted identity matrix !A ¼ !I,

where ! ¼ 1& dð1 þ hÞ. For image deblurring, the layer A>
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image super-resolution, two types of degradation operators
are considered: the Gaussian downsampling and the bicubic
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where H and D denote the Gaussian blur matrix and the
downsampling matrix, respectively. In this case, the layer
A> ¼ H>D> corresponds to first upsample the input LR
image by zero-padding and then convolute the upsampled
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factor s and 1=s (s ¼ 2; 3; 4) to implement the matrix-vector
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Agnostic approach : find a sufficient number of image pairs
(x i , y i ) and train a neural network fθ to invert A by
minimizing the empirical risk

∑
i ‖fθ(y i )− x i‖2

2

3 no need to model A, n nor prior for x
7 needs retraining if A or n change

Decoupled (plug & play) approach : Model separately
1 conditional density pY |X (y | x)

(using physical model, calibration)
2 prior model pX (x) (through NN learning)
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Agnostic approach : find a sufficient number of image pairs
(x i , y i ) and train a neural network fθ to invert A by
minimizing the empirical risk

∑
i ‖fθ(y i )− x i‖2

2

3 no need to model A, n nor prior for x
7 needs retraining if A or n change

Decoupled (plug & play) approach : Model separately
1 conditional density pY |X (y | x)

(using physical model, calibration)
2 prior model pX (x) (through NN learning)
3 Use Bayes theorem to estimate x via MAP or MMSE

3 uses all available modeling information
3 train once, use for many inverse problems
s difficult to learn pX (x) directly
s Non-convex optimization
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Implicitly decoupled approach

Solve the optimization problem

x̂map =arg max
x

pX |Y (x | y)=arg min
x
{F (x , y) + λR(x)}

via ADMM splitting (Ryu et al., 2019)

1 vk+1 = arg minv R(v) + 1
2δ2 ‖v − (xk − uk)‖2

2 xk+1 = arg minx F (x , y) + λ
2δ2 ‖x − (vk+1 − uk)‖2

3 uk+1 = uk + vk+1 − xk+1

R is unknown but we can use a train a neural network to
approximate the δ-denoising problem in step 1:

Dδ(x̃) = arg min
v

R(v) +
1

2δ2
‖v − x̃‖2

Andrés Almansa Solving Inverse Problems in Imaging
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Neural Networks for inverse problems:
Implicitly decoupled approach

Solve the optimization problem via ADMM splitting

x̂map =arg max
x

pX |Y (x | y)=arg min
x
{F (x , y) + λR(x)}

R is unknown but a NN approximates its proximal operator:

Dδ(x̃) = arg min
v

R(v) +
1

2δ2
‖v − x̃‖2

Challenges

NN training produces an MMSE rather than a MAP estimator
for Dδ

Convergence guarantees

Andrés Almansa Solving Inverse Problems in Imaging
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Neural Networks for inverse problems:
Implicitly decoupled approach

Solve the optimization problem via ADMM splitting (Ryu et al., 2019)

x̂map =arg max
x

pX |Y (x | y)=arg min
x
{F (x , y) + λR(x)}

Assumption (A)

1 3 Dδ − I is L-Lipschitz with L ∈ (0, 1)

2 7 F (·, y) is µ-strongly convex

3 7 λ < σ2µ(1+L−2L2)
L →

L→1−
0

Theorem (Ryu et al. (2019))

Under assumption A, the Plug & Play ADMM algorithm converges
to a critical point.

Andrés Almansa Solving Inverse Problems in Imaging
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Explicitly decoupled approach (map-x):
How to use neural networks to learn the prior pX (x) ?

Generative Adversarial Networks (GANs) (Arjovsky and Bottou,

2017; Goodfellow et al., 2014)

Learn a generator function G that maps

z ∼ N (0, Id)

to
x = G(z) ∼ pX
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Explicitly decoupled approach (map-x):
How to use neural networks to learn the prior pX (x) ?

Generative Adversarial Networks (GANs) (Arjovsky and Bottou,

2017; Goodfellow et al., 2014)

Learn a generator function G that maps

z ∼ N (0, Id)

to
x = G(z) ∼ pX

map-x Following Papamakarios et al. (2019, section 5), the push-forward
measure pX = G]pZ can be developed as

pX (x) =
pZ
(
G−1(x)

)
√

detS(G−1(x))
δM(x)

where

S =

(
∂G

∂z

)T (
∂G

∂z

)

M = {x : ∃z , x = G(z)}
Andrés Almansa Solving Inverse Problems in Imaging
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Explicitly decoupled approach (map-x):
How to use neural networks to learn the prior pX (x) ?

Generative Adversarial Networks (GANs) (Arjovsky and Bottou,
2017; Goodfellow et al., 2014) Learn a generator function G that maps

z ∼ N (0, Id) to x = G(z) ∼ pX

map-x Following Papamakarios et al. (2019, section 5), the push-forward measure
pX = G]pZ can be developed as

pX (x) =
pZ
(
G−1(x)

)√
detS(G−1(x))

δM(x)

where

S =

(
∂G

∂z

)T (∂G

∂z

)
M = {x : ∃z , x = G(z)}

x-optimization required to obtain x̂map becomes intractable due to:

computation of S and det S ,

inversion of G, and

hard constraint x ∈M
Andrés Almansa Solving Inverse Problems in Imaging
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Explicitly decoupled approach (map-z):

Instead of solving the x-optimisation problem:

x̂map =arg max
x

pY |X (y | x) pX (x)=arg min
x
{F (x , y) + R(x)}

Bora et al. (2017) propose to optimize over z

ẑ = arg max
z

{
pY |X (y |G(z)) pZ (z)

}

= arg min
z

{
F (G(z), y) +

1

2
‖z‖2

}

x̂z−map = G(ẑ)

x̂z−map ( 6= x̂map) but it maximizes the latent posterior:

x̂z−map = G

(
arg max

z

{
pZ |Y (z | y)

})

Andrés Almansa Solving Inverse Problems in Imaging
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Explicitly decoupled approach (map-z):

x̂z−map ( 6= x̂map) maximizes the latent posterior:

x̂z−map = G

(
arg max

z

{
pZ |Y (z | y)

})

= G

(
arg min

z

{
F (G(z), y) +

1

2
‖z‖2

})

Challenges

Nonconvex optimization using gradient descent

may get stuck in spurious local minima

Common solution: Splitting + continuation scheme

Andrés Almansa Solving Inverse Problems in Imaging
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map-z splitting and continuation scheme.

x̂β = argmin
x

min
z

{
F (x , y) +

β

2
‖x − G(z)‖2 +

1

2
‖z‖2

}

︸ ︷︷ ︸
J1,β (x,z)

x̂map−z = lim
β→∞

x̂β .4 M. GONZÁLEZ, A. ALMANSA AND P. TAN

Algorithm 1.1 map-z splitting

Require: Measurements y, Initial condition x0

Ensure: x̂ = G
�
arg maxz pZ|Y (z | y)

�

1: for k := 0 to kmax do
2: � := �k

3: for n := 0 to maxiter do
4: zn+1 := arg minz J1,�(xn, z) // Nonconvex
5: xn+1 := arg minx J1,�(x, zn+1) // Quadratic
6: end for
7: x0 := xn+1

8: end for
9: return xn+1

However, unlike most cases of HQS which include a linear constraint between the two
variables, this splitting algorithm still contains (line 4) a di�cult non-convex optimization
problem. 1

1.2. Proposed method: Joint MAPx,z. In this work we propose to addresses this chal-
lenge by substituting the di�cult non-convex sub-problem by a local quadratic approximation
provided by the encoder of a variational autoencoder.

Indeed, as we show in Section 2, a variational autoencoder allows to interpret the splitting
Equation (1.5) as the negative logarithm of the joint posterior density pX,Z|Y (x, z | y). There-
fore, solving Equation (1.5) amounts to compute a joint mapx,z estimator that we denote by

x̂�
mapx,z

. Moreover if the same joint conditional density pX,Z|Y (x, z | y) is decomposed in a
di↵erent manner, it leads to an approximate expression that makes use of the encoder, and
is quadratic in z. If this approximation is good enough then the maximization of the joint
log-posterior becomes a bi-concave optimization problem or approximately so. And in that
case, an extension of standard bi-convex optimization results [20] shows that the algorithm
converges to a stationary point.

We also highlight the importance of correctly training the VAE in such a way that the
encoder generalizes well to noisy values of x outside of the support of pX (x). This can be
achieved by training the VAE to reconstruct their clean inputs with noise injected at the input
level, as proposed by Im et al. [24]. We observe that this modified training does not degrade
the quality of the generative model, but makes our quasi-biconvex optimization procedure
much more robust.

Finally we show that a continuation scheme allows to obtain the mapz estimator as the
limit of a series of joint mapx,z optimizations. This continuation scheme, in addition to the
quasi-bi-convex optimization, and the initialisation heuristic provided by the denoising encoder
leads to a much more robust non-convex optimization scheme which more often converges to
the right critical point than a straightforward gradient descent of the mapz model.

The remainder of this paper is organized as follows. In Section 2 we derive a model for

1In another context a primal-dual optimization algorithm was proposed to solve a similar optimization
problem [2], but this approach was not explored in the context where G is a generative model.

Non-convex step 4: Use a local quadratic approximation (VAE encoder) ...

Andrés Almansa Solving Inverse Problems in Imaging
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VAEs and Joint Posterior

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)

Learn a generator function G that maps

z ∼ N (0, Id)

to
x = G(z) ∼ pX
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VAEs and Joint Posterior
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)

Learn a generator function G that maps

z ∼ N (0, Id)

to
x = G(z) ∼ pX

Variational AutoEncoders (VAEs) (Kingma and Welling, 2013)

Generative model: pX |Z (x | z) = pθ(x |z) = N (x ; µθ(z), γId)
Approximate inverse: pZ |X (z | x) ≈ qφ(z |x) = N (z ; µφ(x), Σφ(x))
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VAEs and Joint Posterior

Variational AutoEncoders (VAEs) (Kingma and Welling, 2013)

Generative model: pX |Z (x | z) = pθ(x |z) = N (x ; µθ(z), γId)
Approximate inverse: pZ |X (z | x) ≈ qφ(z |x) = N (z ; µφ(x), Σφ(x))
Learning: Maximize the averaged Evidence Lower BOund (ELBO) for x ∈ D

Lθ,φ(x) = Eqφ(z|x)[log pθ(x |z)]− KL(qφ(z |x) || pZ (z)) ≤ log pθ(x).

Andrés Almansa Solving Inverse Problems in Imaging



12/36

Introduction
Proposed Method

Experiments

Variational AutoEncoder Priors
Joint Posterior Maximization with AutoEncoding Prior
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VAEs and Joint Posterior

Variational AutoEncoders (VAEs) (Kingma and Welling, 2013)

Generative model: pX |Z (x | z) = pθ(x |z) = N (x ; µθ(z), γId)
Joint density: pX ,Z (x , z) = pθ(x |z) pZ (z)
Approximate inverse: pZ |X (z | x) ≈ qφ(z |x) = N (z ; µφ(x), Σφ(x))
Approximate joint density: p̃X ,Z (x , z) := qφ(z |x) pX (x) ≈ pX ,Z (x , z)
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VAEs and Joint Posterior

Variational AutoEncoders (VAEs) (Kingma and Welling, 2013)

Generative model: pX |Z (x | z) = pθ(x |z) = N (x ; µθ(z), γId)
Joint density: pX ,Z (x , z) = pθ(x |z) pZ (z)
Approximate inverse: pZ |X (z | x) ≈ qφ(z |x) = N (z ; µφ(x), Σφ(x))
Approximate joint density: p̃X ,Z (x , z) := qφ(z |x) pX (x) ≈ pX ,Z (x , z)
Joint Posterior: (log-quadratic in x)

J1(x , z) := − log pX ,Z |Y (x , z | y)
= − log pY |X ,Z (y | x , z) pθ(x | z)pZ (z)

= F (x , y) +
1

2γ
‖x − µθ(z)‖2

︸ ︷︷ ︸
Hθ(x,z)

+
1

2
‖z‖2.

(4)

Andrés Almansa Solving Inverse Problems in Imaging
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VAEs and Joint Posterior
Variational AutoEncoders (VAEs) (Kingma and Welling, 2013)

Generative model: pX |Z (x | z) = pθ(x |z) = N (x ; µθ(z), γId)
Joint density: pX ,Z (x , z) = pθ(x |z) pZ (z)
Approximate inverse: pZ |X (z | x) ≈ qφ(z |x) = N (z ; µφ(x), Σφ(x))
Approximate joint density: p̃X ,Z (x , z) := qφ(z |x) pX (x) ≈ pX ,Z (x , z)
Joint Posterior: (log-quadratic in x)

J1(x , z) := − log pX ,Z |Y (x , z | y)
= − log pY |X ,Z (y | x , z) pθ(x | z)pZ (z)

= F (x , y) +
1

2γ
‖x − µθ(z)‖2

︸ ︷︷ ︸
Hθ(x,z)

+
1

2
‖z‖2.

(4)

Approximate Joint Posterior: (log-quadratic in z)

J2(x , z) := − log pY |X ,Z (y | x , z) qφ(z | x) pX (x)

= F (x , y) +
1

2
‖Σ−1/2

φ (x)(z − µφ(x))‖2 + C(x)
︸ ︷︷ ︸

Kφ(x,z)

− log pX (x) . (5)
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Joint Posterior Maximization - Alternate Convex Search
SOLVING INVERSE PROBLEMS BY JOINT POSTERIOR MAX WITH AUTOENCODING PRIOR 9

Algorithm 2.1 Joint posterior maximization - exact case

Require: Measurements y, Autoencoder parameters ✓, �, Initial
condition x0

Ensure: x̂, ẑ = arg maxx,z pX,Z|Y (x, z | y)
1: for n := 0 to maxiter do
2: zn+1 := arg minz J2(xn, z) = µ�(xn) // Quadratic approx
3: xn+1 := arg minx J1(x, zn+1) // Quadratic
4: end for
5: return xn+1, zn+1

The convergence analysis of the proposed schemes requires some general assumptions on
the functions J1 and J2 :

Assumption 2. J1(·, z) is convex and admits a minimizer for any z. Moreover, J1 is coer-
cive and continuously di↵erentiable.

The convergence property of Algorithm 2.1 will be investigated in a wider framework
below (Proposition 2.1). Note that all the properties required in Assumption 2 are satisfied if
we use a di↵erentiable activation function like the Exponential Linear Unit (ELU) [11] with
↵ = 1, instead of the more common ReLU activation function. More details can be found in
Appendix A.

2.4. Approximate Alternate Joint Posterior Maximization. When the autoencoder ap-
proximation in (2.10) is not exact (Assumption 1), the energy we want to minimize in Algo-
rithm 2.1, namely J1 may not decrease. To ensure the decay, some additional steps can be
added. Noting that the approximation provided by J2 provides a fast and accurate heuristic
to initialize the minimization of J1, an alternative scheme is proposed in Algorithm 2.2.

Proposition

If the encoder approximation is exact (J2 = J1) then

J1 is biconvex, and following Gorski et al. (2007):

Algorithm 2.1 is an Alternate Convex Search

Algorithm 2.1 converges to a critical point

Andrés Almansa Solving Inverse Problems in Imaging
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JPMAP - Accuracy of encoder approximation

Contour plots of − log pZ |X (z | x) and − log qφ(z |x) for a fixed x
and for a random 2D subspace in the z domain.

Andrés Almansa Solving Inverse Problems in Imaging



15/36

Introduction
Proposed Method

Experiments

Variational AutoEncoder Priors
Joint Posterior Maximization with AutoEncoding Prior
Denoising Criterion and Continuation Scheme

JPMAP - Accuracy of encoder approximation
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Solving Inverse Problems by Joint Posterior Maximization with a VAE Prior

(a) Encoder approximation (b) Decoded exact optimum (c) Decoded approx. optimum (d) Difference (b)-(c)

Figure 1. Encoder approximation: (a) Contour plots of � log p✓(x|z) + 1
2
kzk2 and � log q�(z|x) for a fixed x and for a random 2D

subspace in the z domain (the plot shows ±2⌃
1/2
� around µ�). Observe the relatively small gap between the true posterior p✓(z|x) and

its variational approximation q�(z|x). This figure shows some evidence of partial z-convexity of J1 around the minimum of J2, but it

does not show how far is z1 from z2. (b) Decoded exact optimum x1 = µ✓

⇣
arg maxz p✓(x|z)e

1
2
kzk2

⌘
. (c) Decoded approximate

optimum x2 = µ✓ (arg maxz q�(z|x)). (d) Difference betweeen (b) and (c)

Choice of nmin: After a few runs of Algorithm 3 we find
that in most cases, during the first two or three iterations z1

decreases the energy with respect to the previous iteration.
But after at most five iterations the autoencoder approxi-
mation is no longer good enough and we need to perform
gradient descent on z in order to further decrease the energy.
Based on these findings we set nmin = 5 in Algorithm 4 for
all experiments.

Figure 3 displays some selected results of compressed sens-
ing and inpainting experiments on MNIST using the pro-
posed approach. Figure 3(a) shows an inpainting experiment
with 80% of missing pixels and Gaussian white noise with
� = 2/255. Figure 3(c) shows a compressed sensing exper-
iment with m = 100 random measurements and Gaussian
white noise with � = 2/255. For comparison we provide
also the result of another decoupled approach proposed by
Bora et al. (2017) with � = 0.1 as suggested in the paper,
which uses the same generative model to compute the MAP
estimator as in Equation (2), but does not make use of the
encoder.2

As we can see in Figure 3, the proposed method significantly
outperforms CSGM. There are still some failure cases (see
last column in Figure 3(c)). However, in the vast majority of
cases our alternate minimization scheme does not get stuck
in local optima, as CSGM does.

2Since Bora et al. (2017) does not provide code, we imple-
mented our own version of their algorithm and utilize the same
trained VAE as encoder � for both algorithms.

4. Conclusions and Future work
In this work we presented a new framework to solve convex
inverse problems with priors learned in the latent space via
variational autoencoders. Unlike similar approaches like
CSGM (Bora et al., 2017) which learns the prior based on
generative models, our approach is based on a generaliza-
tion of alternate convex search to quasi-biconvex functionals.
This quasi-biconvexity is the result of considering the joint
posterior distribution of latent and image spaces. As a result,
the proposed approach provides stronger convergence guar-
antees. Experiments on inpainting and compressed sensing
confirm this, since our approach gets stuck much less often
in spurious local minima than CSGM, which is simply based
on gradient descent of a highly non-convex functional. This
leads to restored images which are significantly better in
terms of MSE.

The present paper provides a first proof of concept of our
framework, on a very simple dataset (MNIST) with a very
simple VAE. More experiments are needed to:

• Verify that the framework preserves its qualitative
advantages on more high-dimensional datasets (like
CelebA, Fashion MNIST, etc.), and a larger selection
of inverse problems.

• Improve the quality of the prior model by using
more elaborate variations of variational autoencoders
which mix the VAE framework with normalizing flows
(Dai and Wipf, 2019), adversarial training (Pu et al.,

Andrés Almansa Solving Inverse Problems in Imaging
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Joint Posterior Maximization - approximate case10 M. GONZÁLEZ, A. ALMANSA AND P. TAN

Algorithm 2.2 Joint posterior maximization - approximate case

Require: Measurements y, Autoencoder parameters ✓, �, Initial
conditions x0, z0

Ensure: x̂, ẑ = arg maxx,z pX,Z|Y (x, z | y)
1: for n := 0 to maxiter do
2: z1 := arg minz J2(xn, z) = µ�(xn) // Quadratic approx
3: z2 := gdz J1(xn, z), starting from z = z1

4: z3 := gdz J1(xn, z), starting from z = zn

5: for i := 1 to 3 do
6: xi := arg minx J1(x, zi) // Quadratic
7: end for
8: i⇤ := arg mini2{1,2,3} J1(x

i, zi)

9: (xn+1, zn+1) := (xi⇤ , zi⇤)
10: end for
11: return xn+1, zn+1

In Algorithm 2.2, gd is a gradient descent scheme such that for any starting point z0, the
output z+ satisfies

@J1

@z
(x, z+) = 0 and J1(x, z+)  J1(x, z0)

Hence, one can consider for instance a gradient descent scheme which finds a local minimizer
of J1(x, ·) starting from z0.

Our experiments with Algorithm 2.2 (Section 3.3) show that during the first few iterations
(where the approximation provided by J2 is good enough) z1 and z2 reach convergence faster
than z3. After a critical number of iterations the opposite is true (the initialization provided
by the previous iteration is better than the J2 approximation, and z3 converges faster).

These observations suggest that a faster execution, with the same convergence properties,
can be achieved by the variant in Algorithm 2.3, which avoids the costly computation of z2

and z3 when unnecessary. Hence, in practice, we will use Algorithm 2.3 rather than Algorithm
2.2. However, Algorithm 2.2 provides a useful tool for diagnostics. Indeed, the comparison of
the evaluation of J1(x

i, zi) for i = 1, 2, 3 performed in step 8 permits to assess the evolution
of the approximation of J1 by J2.

Algorithm 2.3 is still quite fast when J2 provides a su�ciently good approximation, since
in that case the algorithm chooses i⇤ = 1, and avoids any call to the iterative gradient descent
algorithm. Even if we cannot give a precise definition of what su�ciently good means, the
sample comparison of K� and H✓ as functions of z, displayed in Figure 3(a), shows that the
approximation is fair enough in the sense that it preserves the global structure of J1. The
same behavior was observed for a large number of random tests.

Note that Algorithm 2.1 is a particular instance of Algorithm 2.3 in the case where As-
sumption 1 holds, and n1 = n2 = 0 and if grad descent gives a global minimizer of the
considered function (in this case, the computation of z1, z2, are skipped and only z3 is
computed).
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Joint Posterior Maximization - approximate case
SOLVING INVERSE PROBLEMS BY JOINT POSTERIOR MAX WITH AUTOENCODING PRIOR 11

Algorithm 2.3 Joint posterior maximization - approximate case (faster version)

Require: Measurements y, Autoencoder parameters ✓, �, Initial condition x0, iterations
n1  n2  nmax

Ensure: x̂, ẑ = arg maxx,z pX,Z|Y (x, z | y)
1: for n := 0 to nmax do
2: done := FALSE
3: if n < n1 then
4: z1 := arg minz J2(xn, z) = µ�(xn) // Quadratic approx
5: x1 := arg minx J1(x, z1) // Quadratic
6: if J1(x

1, z1) < J1(xn, zn) then
7: i⇤ := 1 // Faster alternative while J2 is good enough
8: done := TRUE
9: end if

10: end if
11: if not done and n < n2 then
12: z1 := arg minz J2(xn, z) = µ�(xn) // Quadratic approx
13: z2 := gdz J1(xn, z), starting from z = z1

14: x2 := arg minx J1(x, z2) // Quadratic
15: if J1(x

2, z2) < J1(xn, zn) then
16: i⇤ := 2 // J2 init is good enough
17: done := TRUE
18: end if
19: end if
20: if not done then
21: z3 := gdz J1(xn, z), starting from z = zn

22: x3 := arg minx J1(x, z3) // Quadratic
23: i⇤ := 3
24: end if
25: (xn+1, zn+1) := (xi⇤ , zi⇤)
26: end for
27: return xn+1, zn+1

Proposition 2.1 (Convergence of Algorithm 2.3). Let {(xn, zn)} be a sequence generated by
Algorithm 2.3. Under Assumption 2 we have that:

1. The sequence {J1(xn, zn)} converges monotonically when n ! 1.
2. The sequence {(xn, zn)} has at least one accumulation point.
3. All accumulation points of {(xn, zn)} are stationary points of J1 and they all have the

same function value.

Proof. Since we are interested in the behaviour for n ! 1, we assume n > n2 in Algo-
rithm 2.3.

1. Since n > n2 the algorithm chooses i⇤ = 3 and zn+1 = z3. According to the definition

Andrés Almansa Solving Inverse Problems in Imaging
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JPMAP - Effectivenes of the encoder initialization

Trajectories of gdz J1(x0, z), starting from z = z0

Thick blue curve: z0 = arg minz J2(x0, z) = µφ(x0)
Thin curves: random initializations z0 ∼ N (0, Id)
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Solving Inverse Problems by Joint Posterior Maximization with a VAE Prior

(a) Energy evolution, initializing with N (0, I). (b) Distance to the optimum at each iteration of (a).

Figure 2. Effectiveness of the encoder approximation: We take x0 from the test set of MNIST and minimize J1(x0, z) with respect to
z using gradient descent from random Gaussian initializations z0. The blue thick curve represents the trajectory if we initialize at the
encoder approximation z1 = arg minz J2(x0, z) = µ�(x0). (a): Plots of the energy iterates J1(x0, zk). (b): `2 distances of each
trajectory with respect to the global optimum z⇤. Conclusion: Observe that the encoder initialization allows much faster convergence both
in energy and in z, and it avoids the few random initializations that lead to a wrong stationary point different from the unique global
minimizer.

2017a,b; Zhang et al., 2019), or BiGANs (Donahue
and Simonyan, 2019).

All variations of the VAE framework cited above have the
potential to improve the quality of our generative model,
and to reduce the gap between J1 and J2. In particular, the
adversarially symmetric VAE (Pu et al., 2017a,b) proves
that when learning reaches convergence the autoencoder
approximation is exact, meaning that Assumption 1 would
become true and the faster and simpler Algorithm 2 could
be used.

When compared to other decoupled plug & play approaches
that solve inverse problems using NN-based priors, our ap-
proach is constrained in different ways:
(a) In a certain sense our approach is less constrained than
existing decoupled approaches since we do not require to
retrain the NN-based denoiser to enforce any particular prop-
erty to ensure convergence: Ryu et al. (2019) requires the
denoiser’s residual operator to be non-expansive, and Gupta
et al. (2018) and Shah and Hegde (2018) require the denoiser
to act as a projector. The effect of these modifications to the
denoiser on the quality of the underlying image prior has
never been studied in detail and chances are that such con-
straints degrade it. Our method only requires a variational
autoencoder without any further constraints, and the quality
and expressiveness of this prior can be easily checked by
sampling and reconstruction experiments. Checking the
quality of the prior is a much more difficult task for Gupta
et al. (2018), Ryu et al. (2019), and Shah and Hegde (2018)
which rely on an implicit prior, and do not provide a genera-
tive model.
(b) Unlike (Ryu et al., 2019) which requires the data-fitting

term F (x) to be strongly convex to ensure convergence,
our method admits weakly convex and ill-posed data-fitting
terms like missing pixels for instance.
(c) On the other hand our method is more constrained in
the sense that it relies on a generative model of a fixed size.
Even if the generator and encoder are both convolutional
neural networks, training and testing the same model on
images of different sizes is a priori not possible because
the latent space has a fixed dimension and a fixed distribu-
tion. As a future work we plan to explore different ways
to address this limitation. The most straightforward way
is to use our model to learn a prior of image patches of a
fixed size and stitch this model via aggregation schemes
like in EPLL (Zoran and Weiss, 2011) to obtain a global
prior model for images of any size. Alternatively we can use
hierarchical generative models like in (Karras et al., 2017)
or resizable ones like in (Bergmann et al., 2017), and adapt
our framework accordingly.
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JPMAP - Convergence

If we use ELU activations then the following assumption is verified:

Assumption (2)

J1(·, z) is convex and admits a minimizer for any z . Moreover, J1

is coercive and continuously differentiable.

Proposition (Convergence of Algorithm 2.3)

Let {(xn, zn)} be a sequence generated by Algorithm 2.3. Under
Assumption 2 we have that:

1 The sequence {J1(xn, zn)} converges monotonically when
n→∞.

2 The sequence {(xn, zn)} has at least one accumulation point.

3 All accumulation points of {(xn, zn)} are stationary points of
J1 and they all have the same function value.
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Denoising Criterion to train VAEs (Im et al., 2017)

Variational AutoEncoders (VAEs) (Kingma and Welling, 2013)

Learning: Maximize the averaged Evidence Lower BOund (ELBO) for x ∈ D

Lθ,φ(x) = Eqφ(z|x)[log pθ(x |z)]− KL(qφ(z |x) || pZ (z)) ≤ log pθ(x).
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Denoising Criterion to train VAEs (Im et al., 2017)

Variational AutoEncoders (VAEs) (Kingma and Welling, 2013)

Learning: Maximize the averaged Evidence Lower BOund (ELBO) for x ∈ D

Lθ,φ(x) = Eqφ(z|x)[log pθ(x |z)]− KL(qφ(z |x) || pZ (z)) ≤ log pθ(x).

Problem: µφ(x) only trained for x ∈ D or x ∈M = µθ(Rm).
But: Step 2 in the algorithm evaluates µφ(xn) for degraded xn /∈M
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Denoising Criterion to train VAEs (Im et al., 2017)

Variational AutoEncoders (VAEs) (Kingma and Welling, 2013)

Learning: Maximize the averaged Evidence Lower BOund (ELBO) for x ∈ D
Lθ,φ(x) = Eqφ(z|x)[log pθ(x |z)]− KL(qφ(z |x) || pZ (z)) ≤ log pθ(x).

Denoising criterion: Train on D̃ but still require µθ(µφ(x̃)) ≈ x .

D̃ = {x̃ = x + σDVAEε : x ∈ D and ε ∼ N (0, I )}
Maximize the denoising ELBO

L̃θ,φ(x) = Ep(x̃|x)

[
Eqφ(z|x̃)[log pθ(x |z)]− KL(qφ(z |x̃) || pZ (z))

]
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Denoising criterion does not degrade generative model

SOLVING INVERSE PROBLEMS BY JOINT POSTERIOR MAX WITH AUTOENCODING PRIOR 15

fully connected layers with ELU activations (to preserve continuous di↵erentiability). The
sizes of the layers are as follows: 8 ! 500 ! 500 ! 784. Note that the covariance matrix is
constant, so it does not augment the size of the output layer which is still 784 = 28⇥28 pixels.

We also trained a VAE on CelebA [30] images cropped to 64⇥ 64⇥ 3. The latent dimen-
sion in this case was set to 32. We choose a DCGAN-like [38] CNN architecture as encoder
and a symmetrical one as decoder with ELU activations, batch normalization and isotropic
covariance as before. For more details, see the code2.

We train these architectures using PyTorch [34] with batch size 128 and Adam algorithm
for 200 epochs with learning rate 0.0001 and rest of the parameters as default.

(a) Denoising (b) Compressed Sensing (c) Inpainting

Figure 1. Evaluating the quality of the generative model as a function of �DVAE. On (a) Denoising
(Gaussian noise � = 150), (b) Compressed Sensing (⇠ 10.2% measurements, noise � = 10) and (c) Inpainting
(80% of missing pixels, noise � = 10). Results of both algorithms are computed on a batch of 50 images and
initialising on ground truth x⇤ (for CSGM we use z0 = µ�(x⇤)).

(a) Denoising (b) Compressed Sensing (c) Inpainting

Figure 2. Evaluating the e↵ectiveness of JPMAP vs CGSM as a function of �DVAE (same setup of Figure 1).
Without a denoising criterion �DVAE = 0 the JPMAP algorithm may provide wrong guesses z1 when applying
the encoder in step 2 of Algorithm 2.2. For �DVAE > 0 however, the alternating minimization algorithm can
benefit from the robust initialization heuristics provided by the encoder, and it consistently converges to a better
local optimum than the simple gradient descent in CSGM.

3.2. Need to train the VAE with a denoising criterion. It should be noted that when
training our Variational Autoencoder we should be more careful that usual. Indeed in the

2Code available at https://github.com/mago876/JPMAP.
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Optimal value of σDVAE

SOLVING INVERSE PROBLEMS BY JOINT POSTERIOR MAX WITH AUTOENCODING PRIOR 15

fully connected layers with ELU activations (to preserve continuous di↵erentiability). The
sizes of the layers are as follows: 8 ! 500 ! 500 ! 784. Note that the covariance matrix is
constant, so it does not augment the size of the output layer which is still 784 = 28⇥28 pixels.

We also trained a VAE on CelebA [30] images cropped to 64⇥ 64⇥ 3. The latent dimen-
sion in this case was set to 32. We choose a DCGAN-like [38] CNN architecture as encoder
and a symmetrical one as decoder with ELU activations, batch normalization and isotropic
covariance as before. For more details, see the code2.

We train these architectures using PyTorch [34] with batch size 128 and Adam algorithm
for 200 epochs with learning rate 0.0001 and rest of the parameters as default.

(a) Denoising (b) Compressed Sensing (c) Inpainting

Figure 1. Evaluating the quality of the generative model as a function of �DVAE. On (a) Denoising
(Gaussian noise � = 150), (b) Compressed Sensing (⇠ 10.2% measurements, noise � = 10) and (c) Inpainting
(80% of missing pixels, noise � = 10). Results of both algorithms are computed on a batch of 50 images and
initialising on ground truth x⇤ (for CSGM we use z0 = µ�(x⇤)).

(a) Denoising (b) Compressed Sensing (c) Inpainting

Figure 2. Evaluating the e↵ectiveness of JPMAP vs CGSM as a function of �DVAE (same setup of Figure 1).
Without a denoising criterion �DVAE = 0 the JPMAP algorithm may provide wrong guesses z1 when applying
the encoder in step 2 of Algorithm 2.2. For �DVAE > 0 however, the alternating minimization algorithm can
benefit from the robust initialization heuristics provided by the encoder, and it consistently converges to a better
local optimum than the simple gradient descent in CSGM.

3.2. Need to train the VAE with a denoising criterion. It should be noted that when
training our Variational Autoencoder we should be more careful that usual. Indeed in the

2Code available at https://github.com/mago876/JPMAP.
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MAP-z as the limit case for β →∞
Two options for map-z estimator instead of the joint map-x-z

1 CSGM - gradient descent, may be stuck in local minima
2 Use Algorithm 2.3 to solve a series of joint map-x-z problems

with increasing values of β = 1
γ →∞ as suggested in

Algorithm 1.1.

Stopping criterion: Inequality constrained problem

arg min
x ,z : ‖G(z)−x‖2≤ε

F (x , y) +
1

2
‖z‖2.

The corresponding Lagrangian form is

max
β

min
x ,z

F (x , y) +
1

2
‖z‖2 + β

(
‖G(z)− x‖2 − ε

)+
(6)

We use the exponential multiplier method (Tseng and Bertsekas,
1993) to guide the search for the optimal value of β (see
Algorithm 2.4)
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MAP-z as the limit case for β →∞

SOLVING INVERSE PROBLEMS BY JOINT POSTERIOR MAX WITH AUTOENCODING PRIOR 13

2.5. MAP-z as the limit case for � ! 1. If one wishes to compute the map-z estimator
instead of the joint map-x-zfrom the previous section, one has two options:

1. Use your favorite gradient descent algorithm to solve equation (1.3).
2. Use Algorithm 2.3 to solve a series of joint map-x-z problems with increasing values

of � ! 1 as suggested in Algorithm 1.1.
In the experimental section we show that the second approach most often leads to a better

optimum.
In practice, in order to provide a stopping criterion for Algorithm 1.1 and to make a sensible

choice of �-values we reformulate Algorithm 1.1 as a constrained optimization problem

arg min
x,z : kG(z)�xk2"

F (x, y) +
1

2
kzk2.

The corresponding Lagrangian form is

(2.12) max
�

min
x,z

F (x, y) +
1

2
kzk2 + �

�
kG(z) � xk2 � "

�+

and we use the exponential multiplier method [49] to guide the search for the optimal value
of � (see Algorithm 2.4)

Algorithm 2.4 map-z as the limit of joint map-x-z.

Require: Measurements y, Tolerance ", Rate ⇢ > 0, Initial �0, Initial x0, Iterations 0 
n1  n2  nmax

Ensure: arg minz : kG(z)�xk2" F (x, y) + 1
2kzk2.

1: � := �0

2: x0, z0 := Algorithm 2.3 starting from x = x0 with �, n1, n2, nmax.
3: converged := FALSE
4: k := 0
5: while not converged do
6: xk+1, zk+1 := Algorithm 2.3 starting from x = xk with � and n1 = n2 = 0
7: C = kG(zk+1) � xk+1k2 � "
8: � := � exp(⇢C)
9: converged := (C  0)

10: k := k + 1
11: end while
12: return xk, zk

3. Experimental results.

3.1. AutoEncoder and dataset. In order to test our joint prior maximization model we
first train a Variational Autoencoder like in [27] on the training data of MNIST handwritten
digits [29].

The stochastic encoder takes as input an image x of 28⇥ 28 = 784 pixels and produces as
an output the mean and (diagonal) covariance matrix of the Gaussian distribution q�(z|x),
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Figure 5. Evolution of Algorithm 2.4. In this inpainting example, JPMAP starts with the initialization
in (a). During first iterations (b) � (d) where �k is small, xk and G(zk) start loosely approaching each other
at a coarse scale, and xk only fills missing pixels with the ones of G(zk) (in particular the noise of y is still

present). By increasing �k in (e) � (f) we enforce kG(zk) � xkk2  ". Here we set ✏ =
�

3
255

�2
d, that is, MSE

of 3 gray levels.

if the encoder is able to provide good initializations for the non-convex z- optimization sub-
problem in line 13 of Algorithm 2.3.

Figures 3 and 4 illustrate these two properties of our VAE. We do so by selecting a ran-
dom x0 from MNIST test set and by computing z⇤(z0) := gdz J1(x0, z) with di↵erent initial
values z0. These experiments were performed using the ADAM minimization algorithm with
learning rate equal to 0.01. Figure 4(a) shows that z⇤(z0) reaches the global optimum for
most (but not all) initializations z0. Indeed from 200 random initializations z0 ⇠ N (0, I),
195 reach the same global minimum, whereas 5 get stuck at a higher energy value. However
these 5 initial values have energy values J1(x0, z0) � J1(x0, z

1) far larger than those of the
encoder initialization z1 = µ�(x0), and are thus never chosen by Algorithm 2.3. The encoder
initialization z1 on the other hand provides much faster convergence to the global optimum.

In addition, this experiment shows that we cannot assume z-convexity: The presence
of plateaux in the trajectories of many random initializations as well as the fact that a few
initializations do not lead to the global minimum indicates that J1 may not be everywhere
convex with respect to z. However, in contrast to classical works on alternate convex search,
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Denoising experiments (MNIST)
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Compressed sensing experiments (MNIST)
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Inpainting experiments (MNIST)
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Denoising experiment: σ = 110/255
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Compressed sensing experiment: m = 140 random
measurements
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Inpainting experiment: 80% missing pixels
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Inpainting experiment: 80% missing pixels σ = 10/255 (CelebA)

From top to bottom: original image x∗, corrupted image x̃ ,
restored by CSGM, restored image x̂ by our framework.
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CelebA reconstructions µθ(µφ(x))

Reconstructions µθ(µφ(x)) (even columns) for some test samples
x (odd columns), showing the over-regularization of data manifold
imposed by the trained VAE. As a consequence, − log pZ |Y (z | y)
does not have as many local minima and then a simple gradient
descent often yields almost the same result as JPMAP.
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Conclusion

JPMAP avoids spurious local minima thanks to

Quasi bi-convex optimization
Encoder initialization
Denoising VAE
Splitting and continuation scheme

JPMAP converges for all quadratic problems and
regularisation parameters (unlike denoiser-based PnP approaches

(Ryu et al., 2019) that are more restrictive)

Constraints

Fixed size
VAEs lag behind GANs
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Future work

Use a more powerful VAE like NVAE (Vahdat and Kautz,

2020) or TwoStageVAE (Dai and Wipf, 2019)

Patch-based JPMAP (EPLL-like)

Use ADMM with non-linear constraints instead of
continuation scheme for map− z
Generalize the scheme to perform posterior sampling
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Preprint and code available here
http://up5.fr/jpmap

Thank you for your attention!

Questions? Comments

Andrés Almansa Solving Inverse Problems in Imaging
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