Solving Inverse Problems in Imaging by Joint Posterior Maximization with Autoencoding Prior

Andrés Almansa

<u>Joint work with</u>: <u>Thanks to</u>: Mario González, Pauline Tan Pablo Musé, Mauricio Delbracio, José Lezama Preprint and code available here http://up5.fr/jpmap

March 9th 2021 - Lecture 8 - M2 MVA course

https://delires.wp.imt.fr

1 Introduction

- Inverse problems in Imaging
- Implicitly decoupled methods
- Explicitly decoupled methods

2 Proposed Method

- Variational AutoEncoder Priors
- Joint Posterior Maximization with AutoEncoding Prior
- Denoising Criterion and Continuation Scheme

3 Experiments

Inverse problems in Imaging Implicitly decoupled methods Explicitly decoupled methods

Inverse Problems in Imaging

Estimate clean image $\boldsymbol{x} \in \mathbb{R}^d$ from noisy, degraded measurements $\boldsymbol{y} \in \mathbb{R}^m$.

Measurements y

Ideal image x

Known degradation model (usually log-concave):

$$p_{Y|X}(\mathbf{y} \mid \mathbf{x}) \propto e^{-F(\mathbf{x}, \mathbf{y})}$$
 where $F(\mathbf{x}, \mathbf{y}) = \frac{1}{2\sigma^2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^2$. (1)

Inverse problems in Imaging Implicitly decoupled methods Explicitly decoupled methods

Inverse Problems in Imaging

Estimate clean image $\mathbf{x} \in \mathbb{R}^d$ from noisy, degraded measurements $\mathbf{y} \in \mathbb{R}^m$. Known degradation model (usually log-concave):

$$p_{Y|X}\left(oldsymbol{y}\,|\,oldsymbol{x}
ight)\propto e^{-F(oldsymbol{x},oldsymbol{y})}$$
 where $F(oldsymbol{x},oldsymbol{y})=rac{1}{2\sigma^2}\|oldsymbol{A}oldsymbol{x}-oldsymbol{y}\|^2.$ (1)

Variational/Bayesian Approach

Use image prior $p_X(x) \propto e^{-\lambda R(x)}$ to compute estimator

$$\hat{\mathbf{x}}_{\text{MAP}} = \arg\max_{\mathbf{x}} p_{X|Y}\left(\mathbf{x} \mid \mathbf{y}\right) = \arg\min_{\mathbf{x}} \left\{ F(\mathbf{x}, \mathbf{y}) + \lambda R(\mathbf{x}) \right\}$$
(2)

$$\hat{\boldsymbol{x}}_{\text{MMSE}} = \arg\min_{\boldsymbol{x}} \mathbb{E}\left[\left\| \boldsymbol{X} - \boldsymbol{x} \right\|^2 \mid \boldsymbol{Y} = \boldsymbol{y} \right]$$
(3)

Inverse problems in Imaging Implicitly decoupled methods Explicitly decoupled methods

Inverse Problems in Imaging

$$p_{Y|X}(\boldsymbol{y} \mid \boldsymbol{x}) \propto e^{-F(\boldsymbol{x}, \boldsymbol{y})}$$
 where $F(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{2\sigma^2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|^2$. (1)

Variational/Bayesian Approach

Use image prior $p_X(x) \propto e^{-\lambda R(x)}$ to compute estimator

$$\hat{\mathbf{x}}_{\text{MAP}} = \arg\max_{\mathbf{x}} p_{X|Y}(\mathbf{x} \mid \mathbf{y}) = \arg\min_{\mathbf{x}} \{F(\mathbf{x}, \mathbf{y}) + \lambda R(\mathbf{x})\}$$
(2)

$$\hat{\boldsymbol{x}}_{\text{MMSE}} = \arg\min_{\boldsymbol{x}} \mathbb{E}\left[\left\| \boldsymbol{X} - \boldsymbol{x} \right\|^2 \mid \boldsymbol{Y} = \boldsymbol{y} \right]$$
(3)

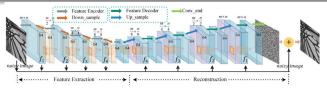
Common explicit priors

- Total Variation (Chambolle, 2004; Louchet and Moisan, 2013; Pereyra, 2016; Rudin et al., 1992)
- Gaussian Mixtures (Teodoro et al., 2018; Yu et al., 2011; Zoran and Weiss, 2011)

Inverse problems in Imaging Implicitly decoupled methods Explicitly decoupled methods

Neural Networks for inverse problems:

Two paradigms

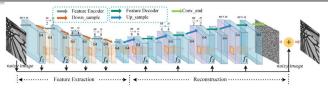


- Agnostic approach : find a sufficient number of image pairs (xⁱ, yⁱ) and train a neural network f_θ to invert A by minimizing the empirical risk ∑_i ||f_θ(yⁱ) xⁱ||²₂
 ✓ no need to model A, n nor prior for x
 - \mathbf{X} needs retraining if A or **n** change

Inverse problems in Imaging Implicitly decoupled methods Explicitly decoupled methods

Neural Networks for inverse problems:

Two paradigms



Agnostic approach : find a sufficient number of image pairs (xⁱ, yⁱ) and train a neural network f_θ to invert A by minimizing the empirical risk ∑_i || f_θ(yⁱ) - xⁱ ||₂²

 \checkmark no need to model A, **n** nor prior for **x**

 \mathbf{X} needs retraining if A or \mathbf{n} change

- Decoupled (plug & play) approach : Model separately
 - **(**) conditional density $p_{Y|X}(\boldsymbol{y} \mid \boldsymbol{x})$

(using physical model, calibration)

- **2** prior model $p_X(\mathbf{x})$ (through NN learning)
 - Use Bayes theorem to estimate \boldsymbol{x} via MAP or MMSE

 Introduction
 Inverse problems in Imaging

 Proposed Method
 Implicitly decoupled methods

 Experiments
 Explicitly decoupled methods

Neural Networks for inverse problems:

Two paradigms

Agnostic approach : find a sufficient number of image pairs (xⁱ, yⁱ) and train a neural network f_θ to invert A by minimizing the empirical risk ∑_i ||f_θ(yⁱ) - xⁱ||²₂

 \checkmark no need to model A, **n** nor prior for x

 \mathbf{X} needs retraining if A or \mathbf{n} change

- Decoupled (plug & play) approach : Model separately
 - conditional density $p_{Y|X}(\boldsymbol{y} \mid \boldsymbol{x})$

(using physical model, calibration)

- 2 prior model $p_X(\mathbf{x})$ (through NN learning)
- Use Bayes theorem to estimate x via MAP or MMSE
 - \checkmark uses all available modeling information
 - ✓ train once, use for many inverse problems
 - \land difficult to learn $p_X(x)$ directly
 - A Non-convex optimization

Introduction Inverse problems in Imaging Proposed Method Experiments Explicitly decoupled methods

Neural Networks for inverse problems:

Implicitly decoupled approach

Solve the optimization problem

$$\hat{\boldsymbol{x}}_{\text{MAP}} = \arg \max_{\boldsymbol{x}} p_{\boldsymbol{X}|\boldsymbol{Y}} \left(\boldsymbol{x} \mid \boldsymbol{y} \right) = \arg \min_{\boldsymbol{x}} \left\{ F(\boldsymbol{x}, \boldsymbol{y}) + \lambda \boldsymbol{R}(\boldsymbol{x}) \right\}$$

via ADMM splitting (RYU ET AL., 2019)

$$\mathbf{0} \ \mathbf{v}_{k+1} = \arg\min_{\mathbf{v}} \frac{\mathbf{R}(\mathbf{v}) + \frac{1}{2\delta^2} \|\mathbf{v} - (\mathbf{x}_k - \mathbf{u}_k)\|^2$$

2
$$oldsymbol{x}_{k+1} = rgmin_{oldsymbol{x}} F(oldsymbol{x},oldsymbol{y}) + rac{\lambda}{2\delta^2} \|oldsymbol{x} - (oldsymbol{v}_{k+1} - oldsymbol{u}_k)\|^2$$

3
$$oldsymbol{u}_{k+1} = oldsymbol{u}_k + oldsymbol{v}_{k+1} - oldsymbol{x}_{k+1}$$

R is unknown but we can use a train a neural network to approximate the δ -denoising problem in step 1:

$$D_{\delta}(\tilde{\boldsymbol{x}}) = \arg\min_{\boldsymbol{v}} \frac{\boldsymbol{R}(\boldsymbol{v}) + \frac{1}{2\delta^2} \|\boldsymbol{v} - \tilde{\boldsymbol{x}}\|^2}{\|\boldsymbol{v} - \tilde{\boldsymbol{x}}\|^2}$$

Introduction Proposed Method Experiments Implicitly decoupled methods Explicitly decoupled methods

Neural Networks for inverse problems:

Implicitly decoupled approach

Solve the optimization problem via ADMM splitting

$$\hat{\boldsymbol{x}}_{\text{MAP}} = \arg \max_{\boldsymbol{x}} p_{X|Y}(\boldsymbol{x} \mid \boldsymbol{y}) = \arg \min_{\boldsymbol{x}} \{F(\boldsymbol{x}, \boldsymbol{y}) + \lambda R(\boldsymbol{x})\}$$

R is unknown but a NN approximates its proximal operator:

$$D_{\delta}(ilde{oldsymbol{x}}) = rgmin_{oldsymbol{v}} oldsymbol{R}(oldsymbol{v}) + rac{1}{2\delta^2} \|oldsymbol{v} - ilde{oldsymbol{x}}\|^2$$

Challenges

- NN training produces an MMSE rather than a MAP estimator for D_{δ}
- Convergence guarantees

Introduction Proposed Method Experiments Implicitly decoupled methods Explicitly decoupled methods

Neural Networks for inverse problems:

Implicitly decoupled approach

Solve the optimization problem via ADMM splitting (RYU ET AL., 2019)

$$\hat{\boldsymbol{x}}_{\text{MAP}} = \arg \max_{\boldsymbol{x}} p_{X|Y}(\boldsymbol{x} \mid \boldsymbol{y}) = \arg \min_{\boldsymbol{x}} \{F(\boldsymbol{x}, \boldsymbol{y}) + \lambda R(\boldsymbol{x})\}$$

Assumption (A)

•
$$I_{\delta} - I$$
 is L-Lipschitz with $L \in (0, 1)$

$$F(\cdot, \mathbf{y}) \text{ is } \mu\text{-strongly convex}$$

$$\bigwedge X < \xrightarrow{L} \qquad \xrightarrow$$

Theorem (Ryu et al. (2019))

Under assumption A, the Plug & Play ADMM algorithm converges to a critical point.

Introduction Inv Proposed Method Im Experiments Ex

Inverse problems in Imaging Implicitly decoupled methods Explicitly decoupled methods

Explicitly decoupled approach (MAP-x): How to use neural networks to learn the prior $p_X(x)$?

Generative Adversarial Networks (GANs) (ARJOVSKY AND BOTTOU,

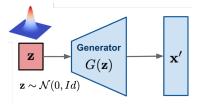
2017; GOODFELLOW ET AL., 2014)

Learn a generator function G that maps

$$z \sim \mathcal{N}(0, Id)$$

to

$$\mathbf{x} = \mathsf{G}(\mathbf{z}) \sim p_X$$



Introduction Proposed Method Experiments Implicitly decoupled methods Explicitly decoupled methods

Explicitly decoupled approach (MAP-*x*):

How to use neural networks to learn the prior $p_X(\mathbf{x})$?

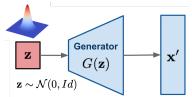
Generative Adversarial Networks (GANs) (Arjovsky and Bottou, 2017; Goodfellow et al., 2014)

Learn a generator function G that maps

$$z \sim \mathcal{N}(0, Id)$$

to

$$m{x} = {\sf G}(m{z}) \sim p_X$$



MAP-**x** Following PAPAMAKARIOS ET AL. (2019, SECTION 5), the push-forward measure $p_X = G \ddagger p_Z$ can be developed as

$$p_X(\mathbf{x}) = \frac{p_Z(\mathsf{G}^{-1}(\mathbf{x}))}{\sqrt{\det S(\mathsf{G}^{-1}(\mathbf{x}))}} \delta_{\mathcal{M}}(\mathbf{x})$$

where

$$S = \left(\frac{\partial G}{\partial z}\right)^{T} \left(\frac{\partial G}{\partial z}\right)$$
$$\mathcal{M} = \{x : \exists z, x = G(z)\}$$

 Introduction
 Inverse problems in Imaging

 Proposed Method
 Implicitly decoupled methods

 Experiments
 Explicitly decoupled methods

Explicitly decoupled approach (MAP-*x*):

How to use neural networks to learn the prior $p_X(\mathbf{x})$?

Generative Adversarial Networks (GANs) (ARJOVSKY AND BOTTOU, 2017; GOODFELLOW ET AL., 2014) Learn a generator function G that maps

$$oldsymbol{z} \sim \mathcal{N}(0, Id)$$
 to $oldsymbol{x} = \mathsf{G}(oldsymbol{z}) \sim p_X$

MAP-x Following PAPAMAKARIOS ET AL. (2019, SECTION 5), the push-forward measure $p_X = G \sharp p_Z$ can be developed as

$$p_X(\mathbf{x}) = \frac{p_Z(\mathsf{G}^{-1}(\mathbf{x}))}{\sqrt{\det S(\mathsf{G}^{-1}(\mathbf{x}))}} \delta_{\mathcal{M}}(\mathbf{x})$$

where

$$S = \left(\frac{\partial G}{\partial z}\right)^T \left(\frac{\partial G}{\partial z}\right)$$
$$\mathcal{M} = \{x : \exists z, x = G(z)\}$$

 \pmb{x} -optimization required to obtain $\hat{\pmb{x}}_{\text{MAP}}$ becomes intractable due to:

- computation of S and det S,
- inversion of G, and
- hard constraint $x \in \mathcal{M}$

Introduction Inverse problems in Imaging Proposed Method Implicitly decoupled methods Experiments Explicitly decoupled methods

Explicitly decoupled approach (MAP-*z*):

Instead of solving the *x*-optimisation problem:

$$\hat{\boldsymbol{x}}_{\text{MAP}} = \arg \max_{\boldsymbol{x}} p_{\boldsymbol{Y}|\boldsymbol{X}} \left(\boldsymbol{y} \mid \boldsymbol{x} \right) p_{\boldsymbol{X}} \left(\boldsymbol{x} \right) = \arg \min_{\boldsymbol{x}} \left\{ F(\boldsymbol{x}, \boldsymbol{y}) + R(\boldsymbol{x}) \right\}$$

Bora et al. (2017) propose to optimize over \boldsymbol{z}

$$\hat{\boldsymbol{z}} = \arg \max_{\boldsymbol{z}} \left\{ p_{Y|X} \left(\boldsymbol{y} \mid \boldsymbol{\mathsf{G}}(\boldsymbol{z}) \right) p_{Z} \left(\boldsymbol{z} \right) \right\}$$
$$= \arg \min_{\boldsymbol{z}} \left\{ F(\boldsymbol{\mathsf{G}}(\boldsymbol{z}), \boldsymbol{y}) + \frac{1}{2} \|\boldsymbol{z}\|^{2} \right\}$$
$$\hat{\boldsymbol{x}}_{\boldsymbol{z}-\mathrm{MAP}} = \boldsymbol{\mathsf{G}}(\hat{\boldsymbol{z}})$$

 $\hat{\pmb{x}}_{\pmb{z}-\mathrm{MAP}}~(
eq \hat{\pmb{x}}_{\mathrm{MAP}})$ but it maximizes the latent posterior:

$$\hat{\boldsymbol{x}}_{\boldsymbol{z}-\text{MAP}} = \mathsf{G}\left(\arg\max_{\boldsymbol{z}}\left\{p_{\boldsymbol{Z}\mid\boldsymbol{Y}}\left(\boldsymbol{z}\mid\boldsymbol{y}\right)\right\}\right)$$

Introduction Inverse problems in Imaging Proposed Method Implicitly decoupled methods Experiments Explicitly decoupled methods

Explicitly decoupled approach (MAP-*z*):

 $\hat{\pmb{x}}_{\pmb{z}-\mathrm{MAP}}~(
eq \hat{\pmb{x}}_{\mathrm{MAP}})$ maximizes the latent posterior:

$$\begin{split} \hat{\boldsymbol{x}}_{\boldsymbol{z}-\text{MAP}} &= \mathsf{G}\left(\arg\max_{\boldsymbol{z}}\left\{p_{Z|Y}\left(\boldsymbol{z} \mid \boldsymbol{y}\right)\right\}\right) \\ &= \mathsf{G}\left(\arg\min_{\boldsymbol{z}}\left\{F(\mathsf{G}(\boldsymbol{z}), \boldsymbol{y}) + \frac{1}{2}\|\boldsymbol{z}\|^{2}\right\}\right) \end{split}$$

Challenges

- Nonconvex optimization using gradient descent
- may get stuck in spurious local minima

Common solution: Splitting + continuation scheme

Introduction Inverse problems in Imaging Proposed Method Implicitly decoupled methods Experiments Explicitly decoupled methods

MAP-z splitting and continuation scheme.

$$\hat{\boldsymbol{x}}_{\beta} = \arg\min_{\boldsymbol{x}} \min_{\boldsymbol{z}} \underbrace{\left\{ F(\boldsymbol{x}, \boldsymbol{y}) + \frac{\beta}{2} \|\boldsymbol{x} - \mathsf{G}(\boldsymbol{z})\|^2 + \frac{1}{2} \|\boldsymbol{z}\|^2 \right\}}_{J_{1,\beta}(\boldsymbol{x}, \boldsymbol{z})}$$

 $\hat{\pmb{x}}_{\scriptscriptstyle{\mathrm{MAP}}-\pmb{z}} = \lim_{eta
ightarrow \infty} \hat{\pmb{x}}_{eta}.$

Algorithm 1.1 MAP-z splitting **Require:** Measurements \boldsymbol{y} , Initial condition \boldsymbol{x}_0 **Ensure:** $\hat{\boldsymbol{x}} = \mathsf{G}\left(\arg\max_{\boldsymbol{z}} p_{Z|Y}\left(\boldsymbol{z} \mid \boldsymbol{y}\right)\right)$ 1: for k := 0 to k_{max} do $\beta := \beta_{k}$ 2. for n := 0 to maxiter do 3: 4. $\boldsymbol{z}_{n+1} := \arg\min_{\boldsymbol{z}} J_{1,\beta}(\boldsymbol{x}_n, \boldsymbol{z})$ // Nonconvex $\boldsymbol{x}_{n+1} := \arg\min_{\boldsymbol{x}} J_{1\beta}(\boldsymbol{x}, \boldsymbol{z}_{n+1})$ // Quadratic 5: end for 6. 7: $x_0 := x_{n+1}$ 8: end for 9: return x_{n+1}

Non-convex step 4: Use a local quadratic approximation (VAE encoder) ...

11/36

Variational AutoEncoder Priors Joint Posterior Maximization with AutoEncoding Prior Denoising Criterion and Continuation Scheme

VAEs and Joint Posterior

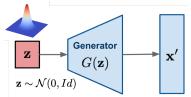
Generative Adversarial Networks (GANs) (GOODFELLOW ET AL., 2014)

Learn a generator function G that maps

$$z \sim \mathcal{N}(0, Id)$$

to

$$\mathbf{x} = \mathsf{G}(\mathbf{z}) \sim p_X$$



Variational AutoEncoder Priors Joint Posterior Maximization with AutoEncoding Prior Denoising Criterion and Continuation Scheme

VAEs and Joint Posterior

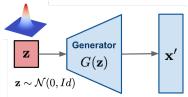
Generative Adversarial Networks (GANs) (GOODFELLOW ET AL., 2014)

Learn a generator function G that maps

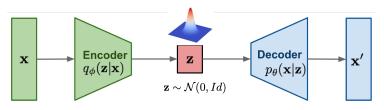
$$z \sim \mathcal{N}(0, Id)$$

to

$$\mathbf{x} = \mathsf{G}(\mathbf{z}) \sim p_X$$



Variational AutoEncoders (VAEs) (KINGMA AND WELLING, 2013)

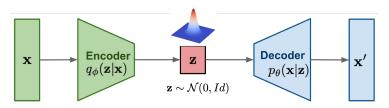


Generative model: Approximate inverse:

$$p_{X|Z}\left(oldsymbol{x} \mid oldsymbol{z}
ight) = p_{ heta}(oldsymbol{x} \mid oldsymbol{z}) = \mathcal{N}(oldsymbol{x}; \ oldsymbol{\mu}_{ heta}(oldsymbol{z}), \ \gamma Id) \ p_{Z|X}\left(oldsymbol{z} \mid oldsymbol{x}
ight) pprox q_{\phi}(oldsymbol{z} \mid oldsymbol{x}) = \mathcal{N}(oldsymbol{z}; \ oldsymbol{\mu}_{\phi}(oldsymbol{x}), \ \Sigma_{\phi}(oldsymbol{x}))$$

VAEs and Joint Posterior

Variational AutoEncoders (VAEs) (KINGMA AND WELLING, 2013)



$$\mathcal{L}_{ heta,\phi}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{ heta}(\mathbf{x}|\mathbf{z})] - \mathcal{K}\mathcal{L}(q_{\phi}(\mathbf{z}|\mathbf{x}) \mid\mid p_{Z}(\mathbf{z})) \leq \log p_{ heta}(\mathbf{x}).$$

VAEs and Joint Posterior

Variational AutoEncoders (VAEs) (KINGMA AND WELLING, 2013)

Generative model: Joint density: Approximate inverse: Approximate joint density:

$$p_{X|Z}(\mathbf{x} \mid \mathbf{z}) = p_{\theta}(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mathbf{x}; \ \boldsymbol{\mu}_{\theta}(\mathbf{z}), \ \gamma Id)$$

$$p_{X,Z}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{x} \mid \mathbf{z}) \ p_{Z}(\mathbf{z})$$

$$p_{Z|X}(\mathbf{z} \mid \mathbf{x}) \approx q_{\phi}(\mathbf{z} \mid \mathbf{x}) = \mathcal{N}(\mathbf{z}; \ \boldsymbol{\mu}_{\phi}(\mathbf{x}), \ \boldsymbol{\Sigma}_{\phi}(\mathbf{x}))$$

$$\tilde{p}_{X,Z}(\mathbf{x}, \mathbf{z}) := q_{\phi}(\mathbf{z} \mid \mathbf{x}) \ p_{X}(\mathbf{x}) \approx p_{X,Z}(\mathbf{x}, \mathbf{z})$$

VAEs and Joint Posterior

Variational AutoEncoders (VAEs) (KINGMA AND WELLING, 2013)

Generative model: Joint density:

Approximate inverse:

Approximate joint density: Joint Posterior: (log-quadratic in)

$$\begin{array}{l} p_{X|Z}\left(\mathbf{x} \mid \mathbf{z}\right) = p_{\theta}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; \ \boldsymbol{\mu}_{\theta}(\mathbf{z}), \ \gamma \textit{Id}) \\ p_{X,Z}\left(\mathbf{x}, \mathbf{z}\right) = p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{Z}\left(\mathbf{z}\right) \\ p_{Z|X}\left(\mathbf{z} \mid \mathbf{x}\right) \approx q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}; \ \boldsymbol{\mu}_{\phi}(\mathbf{x}), \ \boldsymbol{\Sigma}_{\phi}(\mathbf{x})) \\ \tilde{p}_{X,Z}(\mathbf{x}, \mathbf{z}) := q_{\phi}(\mathbf{z}|\mathbf{x}) \ p_{X}\left(\mathbf{x}\right) \approx p_{X,Z}\left(\mathbf{x}, \mathbf{z}\right) \\ \mathbf{x} \end{array}$$

$$J_{1}(x, z) := -\log p_{X,Z|Y}(x, z | y) = -\log p_{Y|X,Z}(y | x, z) p_{\theta}(x | z) p_{Z}(z) = F(x, y) + \underbrace{\frac{1}{2\gamma} ||x - \mu_{\theta}(z)||^{2}}_{H_{\theta}(x, z)} + \frac{1}{2} ||z||^{2}.$$
(4)

VAEs and Joint Posterior

Variational AutoEncoders (VAEs)(KINGMA AND WELLING, 2013)Generative model: $p_{X|Z}(x|z) = p_{\theta}(x|z) = \mathcal{N}(x; \mu_{\theta}(z), \gamma Id)$ Joint density: $p_{X,Z}(x,z) = p_{\theta}(x|z) p_{Z}(z)$ Approximate inverse: $p_{Z|X}(z|x) \approx q_{\phi}(z|x) = \mathcal{N}(z; \mu_{\phi}(x), \Sigma_{\phi}(x))$ Approximate joint density: $\tilde{p}_{X,Z}(x,z) := q_{\phi}(z|x) p_{X}(x) \approx p_{X,Z}(x,z)$ Joint Posterior:(log-quadratic in x)

$$J_{1}(\boldsymbol{x}, \boldsymbol{z}) := -\log p_{\boldsymbol{X}, \boldsymbol{Z} | \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{y})$$

$$= -\log p_{\boldsymbol{Y} | \boldsymbol{X}, \boldsymbol{Z}}(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{z}) p_{\boldsymbol{\theta}}(\boldsymbol{x} | \boldsymbol{z}) p_{\boldsymbol{Z}}(\boldsymbol{z})$$

$$= F(\boldsymbol{x}, \boldsymbol{y}) + \underbrace{\frac{1}{2\gamma} \| \boldsymbol{x} - \boldsymbol{\mu}_{\boldsymbol{\theta}}(\boldsymbol{z}) \|^{2}}_{H_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z})} + \frac{1}{2} \| \boldsymbol{z} \|^{2}.$$
(4)

Approximate Joint Posterior: (log-quadratic in z)

$$J_{2}(x, z) := -\log p_{Y|X,Z}(y | x, z) q_{\phi}(z | x) p_{X}(x)$$

= $F(x, y) + \underbrace{\frac{1}{2} \| \Sigma_{\phi}^{-1/2}(x)(z - \mu_{\phi}(x)) \|^{2} + C(x)}_{K_{\phi}(x, z)} - \log p_{X}(x).$ (5)

Joint Posterior Maximization - Alternate Convex Search

Algorithm 2.1 Joint posterior maximization - exact case Require: Measurements y, Autoencoder parameters θ , ϕ , Initial

condition x_0

Ensure: $\hat{\boldsymbol{x}}, \hat{\boldsymbol{z}} = \operatorname{arg} \max_{\boldsymbol{x}, \boldsymbol{z}} p_{X, Z \mid Y} \left(\boldsymbol{x}, \boldsymbol{z} \mid \boldsymbol{y} \right)$

- 1: for n := 0 to maxiter do
- 2: $\boldsymbol{z}_{n+1} := \arg\min_{\boldsymbol{z}} J_2(\boldsymbol{x}_n, \boldsymbol{z}) = \boldsymbol{\mu}_{\phi}(\boldsymbol{x}_n) // \text{Quadratic approx}$
- 3: $\boldsymbol{x}_{n+1} := \arg\min_{\boldsymbol{x}} J_1(\boldsymbol{x}, \boldsymbol{z}_{n+1})$ // Quadratic
- 4: end for

5: return
$$x_{n+1}, z_{n+1}$$

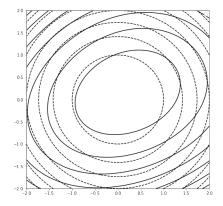
Proposition

If the encoder approximation is exact $(J_2 = J_1)$ then

- J₁ is biconvex, and following GORSKI ET AL. (2007):
- Algorithm 2.1 is an Alternate Convex Search
- Algorithm 2.1 converges to a critical point

Introduction Variational AutoEncoder Priors Proposed Method Joint Posterior Maximization with AutoEncoding Prior Experiments Denoising Criterion and Continuation Scheme

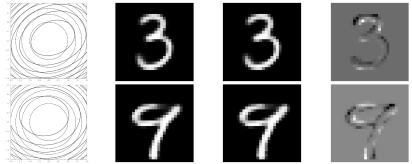
JPMAP - Accuracy of encoder approximation



Contour plots of $-\log p_{Z|X}(z | x)$ and $-\log q_{\phi}(z | x)$ for a fixed x and for a random 2D subspace in the z domain.

Variational AutoEncoder Priors Joint Posterior Maximization with AutoEncoding Prior Denoising Criterion and Continuation Scheme

JPMAP - Accuracy of encoder approximation



(a) Encoder approximation

(b) Decoded exact optimum

(c) Decoded approx. optimum

(d) Difference (b)-(c)

Figure 1. Encoder approximation: (a) Contour plots of $-\log p_{\theta}(\boldsymbol{x}|\boldsymbol{x}) + \frac{1}{2}||\boldsymbol{x}||^2$ and $-\log q_{\phi}(\boldsymbol{x}|\boldsymbol{x})$ for a fixed \boldsymbol{x} and for a random 2D subspace in the \boldsymbol{z} domain (the plot shows $\pm 2\Sigma_{1/2}^{1/2}$ around μ_{ϕ}). Observe the relatively small gap between the true posterior $p_{\theta}(\boldsymbol{z}|\boldsymbol{x})$ and its variational approximation $q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$. This figure shows some evidence of partial \boldsymbol{z} -convexity of J_1 around the minimum of J_2 , but it does not show how far is \boldsymbol{z}^1 from \boldsymbol{z}^2 . (b) Decoded exact optimum $\boldsymbol{x}_1 = \mu_{\theta} \left(\arg \max_{\boldsymbol{x}} p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) e^{\frac{1}{2}||\boldsymbol{x}||^2}\right)$. (c) Decoded approximate optimum $\boldsymbol{x}_2 = \mu_{\theta}(\arg \max_{\boldsymbol{x}} q_{\phi}(\boldsymbol{z}|\boldsymbol{x}))$. (d) Difference between (b) and (c)

Joint Posterior Maximization - approximate case

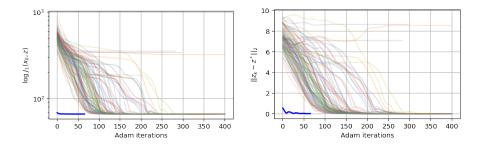
Algorithm 2.2 Joint posterior maximization - approximate case **Require:** Measurements y, Autoencoder parameters θ , ϕ , Initial conditions $\boldsymbol{x}_0, \boldsymbol{z}_0$ Ensure: $\hat{\boldsymbol{x}}, \hat{\boldsymbol{z}} = \arg \max_{\boldsymbol{x}, \boldsymbol{z}} p_{X, Z|Y}(\boldsymbol{x}, \boldsymbol{z} \mid \boldsymbol{y})$ 1: for n := 0 to maximize do $z^1 := \operatorname{arg\,min}_z J_2(x_n, z) = \mu_\phi(x_n)$ // Quadratic approx 2: 3: $z^2 := \operatorname{GD}_z J_1(x_n, z)$, starting from $z = z^1$ 4: $\boldsymbol{z}^3 := \operatorname{GD}_{\boldsymbol{z}} J_1(\boldsymbol{x}_n, \boldsymbol{z})$, starting from $\boldsymbol{z} = \boldsymbol{z}_n$ 5: for i := 1 to 3 do 6: $\boldsymbol{x}^i := \arg\min_{\boldsymbol{x}} J_1(\boldsymbol{x}, \boldsymbol{z}^i)$ / Quadratic 7: end for $i^* := \arg\min_{i \in \{1,2,3\}} J_1(x^i, z^i)$ 8: $(x_{n+1}, z_{n+1}) := (x^{i^*}, z^{i^*})$ 9. 10: end for 11: return x_{n+1}, z_{n+1}

Joint Posterior Maximization - approximate case

Algorithm 2.3 Joint posterior maximization - approximate case (faster version) **Require:** Measurements y, Autoencoder parameters θ , ϕ , Initial condition x_0 , iterations $n_1 < n_2 < n_{max}$ Ensure: $\hat{x}, \hat{z} = \arg \max_{x \neq y} p_{X \mid Z \mid Y}(x, z \mid y)$ 1: for n := 0 to n_{max} do done := FALSE3if $n < n_1$ then $z^1 := \arg \min_z J_2(x_n, z) = \mu_\phi(x_n)$ 4: // Quadratic approx $\boldsymbol{x}^1 := \arg\min_{\boldsymbol{x}} J_1(\boldsymbol{x}, \boldsymbol{z}^1)$ // Quadratic 6. if $J_1(x^1, z^1) < J_1(x_n, z_n)$ then $i^* := 1$ // Faster alternative while J₂ is good enough 8 done := TRUEend if 9 10end if if not done and $n < n_2$ then 11: $z^1 := \arg \min_z J_2(x_n, z) = \mu_\phi(x_n)$ 12: // Quadratic approx 13: $z^2 := GD_z J_1(x_n, z)$, starting from $z = z^1$ $\boldsymbol{x}^2 := \arg\min_{\boldsymbol{x}} J_1(\boldsymbol{x}, \boldsymbol{z}^2)$ 14: // Quadratic if $J_1(x^2, z^2) < J_1(x_n, z_n)$ then 15: 16. $i^* := 2$ $//J_2$ init is good enough done := TRUE17: 18end if end if 19: 20if not done then $z^3 := GD_z J_1(x_n, z)$, starting from $z = z_n$ 21: $x^3 := \arg \min_x J_1(x, z^3)$ 22: // Quadratic 23 $i^* := 3$ end if 24. $(x_{n+1}, z_{n+1}) := (x^{i^*}, z^{i^*})$ 25:26 end for 27: return x_{n+1}, z_{n+1}

JPMAP - Effectivenes of the encoder initialization

Trajectories of GD_z $J_1(x_0, z)$, starting from $z = z_0$ Thick blue curve: $z_0 = \arg \min_z J_2(x_0, z) = \mu_{\phi}(x_0)$ Thin curves: random initializations $z_0 \sim \mathcal{N}(0, Id)$



JPMAP - Convergence

If we use ELU activations then the following assumption is verified:

Assumption (2)

 $J_1(\cdot, \mathbf{z})$ is convex and admits a minimizer for any \mathbf{z} . Moreover, J_1 is coercive and continuously differentiable.

Proposition (Convergence of Algorithm 2.3)

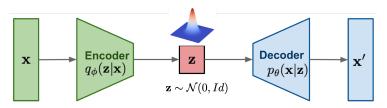
Let $\{(\mathbf{x}_n, \mathbf{z}_n)\}$ be a sequence generated by Algorithm 2.3. Under Assumption 2 we have that:

- The sequence $\{J_1(\mathbf{x}_n, \mathbf{z}_n)\}$ converges monotonically when $n \to \infty$.
- **2** The sequence $\{(\mathbf{x}_n, \mathbf{z}_n)\}$ has at least one accumulation point.
- All accumulation points of {(x_n, z_n)} are stationary points of J₁ and they all have the same function value.

Introduction Variational AutoEncoder Priors Proposed Method Joint Posterior Maximization with AutoEncoding Prior Experiments Denoising Criterion and Continuation Scheme

Denoising Criterion to train VAEs (IM ET AL., 2017)

Variational AutoEncoders (VAEs) (KINGMA AND WELLING, 2013)



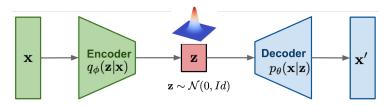
Learning: Maximize the averaged *Evidence Lower BOund (ELBO)* for $x \in D$

$$\mathcal{L}_{ heta,\phi}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{ heta}(\mathbf{x}|\mathbf{z})] - \mathcal{K}\mathcal{L}(q_{\phi}(\mathbf{z}|\mathbf{x}) \mid\mid p_{Z}(\mathbf{z})) \leq \log p_{ heta}(\mathbf{x}).$$

Introduction Variational AutoEncoder Priors Proposed Method Joint Posterior Maximization with AutoEncoding Prior Denoising Criterion and Continuation Scheme

Denoising Criterion to train VAEs (IM ET AL., 2017)

Variational AutoEncoders (VAEs) (KINGMA AND WELLING, 2013)



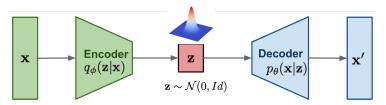
Learning: Maximize the averaged *Evidence Lower BOund (ELBO)* for $x \in D$

$$\mathcal{L}_{ heta,\phi}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{ heta}(\mathbf{x}|\mathbf{z})] - \mathcal{K}\mathcal{L}(q_{\phi}(\mathbf{z}|\mathbf{x}) \mid\mid p_{Z}(\mathbf{z})) \leq \log p_{ heta}(\mathbf{x}).$$

Problem: $\mu_{\phi}(\mathbf{x})$ only trained for $\mathbf{x} \in \mathcal{D}$ or $\mathbf{x} \in \mathcal{M} = \mu_{\theta}(\mathbb{R}^m)$. **But:** Step 2 in the algorithm evaluates $\mu_{\phi}(\mathbf{x}_n)$ for degraded $\mathbf{x}_n \notin \mathcal{M}$ Introduction Variational AutoEncoder Priors Proposed Method Joint Posterior Maximization with AutoEncoding Prior Experiments Denoising Criterion and Continuation Scheme

Denoising Criterion to train VAEs (IM ET AL., 2017)

Variational AutoEncoders (VAEs) (KINGMA AND WELLING, 2013)



Learning: Maximize the averaged *Evidence Lower BOund (ELBO)* for $\mathbf{x} \in \mathcal{D}$ $\mathcal{L}_{\theta,\phi}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \mathcal{K}L(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{Z}(\mathbf{z})) \leq \log p_{\theta}(\mathbf{x}).$

Denoising criterion: Train on $\tilde{\mathcal{D}}$ but still require $\mu_{\theta}(\mu_{\phi}(\tilde{x})) \approx x$.

$$ilde{\mathcal{D}} = \{ ilde{m{x}} = m{x} + \sigma_{\mathsf{DVAE}}arepsilon \,:\, m{x} \in \mathcal{D} ext{ and } arepsilon \sim \mathcal{N}(\mathbf{0}, I)\}$$

Maximize the denoising ELBO

$$ilde{\mathcal{L}}_{ heta,\phi}(m{x}) = \mathbb{E}_{
ho(ilde{m{x}}|m{x})} \left[\mathbb{E}_{q_{\phi}(m{z}| ilde{m{x}})}[\log p_{ heta}(m{x}|m{z})] - \mathcal{K}L(q_{\phi}(m{z}| ilde{m{x}}) \mid\mid p_{Z}(m{z}))
ight]$$

Introduction Variational AutoEncoder Priors Proposed Method Joint Posterior Maximization with AutoEncoding Prior Experiments Denoising Criterion and Continuation Scheme

Denoising criterion does not degrade generative model

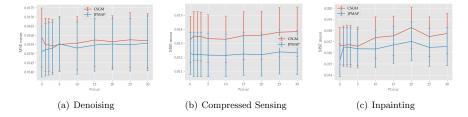


Figure 1. Evaluating the quality of the generative model as a function of σ_{DVAE} . On (a) Denoising (Gaussian noise $\sigma = 150$), (b) Compressed Sensing (~ 10.2% measurements, noise $\sigma = 10$) and (c) Inpainting (80% of missing pixels, noise $\sigma = 10$). Results of both algorithms are computed on a batch of 50 images and initialising on ground truth \mathbf{x}^* (for CSGM we use $\mathbf{z}_0 = \boldsymbol{\mu}_{\phi}(\mathbf{x}^*)$).

Introduction Variational AutoEncoder Priors Joint Posterior Maximization with AutoEncod Experiments Denoising Criterion and Continuation Scheme

Optimal value of σ_{DVAE}

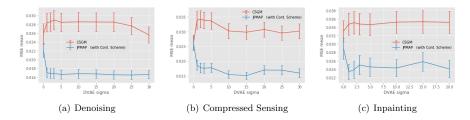


Figure 2. Evaluating the effectiveness of JPMAP vs CGSM as a function of σ_{DVAE} (same setup of Figure 1). Without a denoising criterion $\sigma_{\text{DVAE}} = 0$ the JPMAP algorithm may provide wrong guesses z^1 when applying the encoder in step 2 of Algorithm 2.2. For $\sigma_{\text{DVAE}} > 0$ however, the alternating minimization algorithm can benefit from the robust initialization heuristics provided by the encoder, and it consistently converges to a better local optimum than the simple gradient descent in CSGM.

MAP-z as the limit case for $\beta \to \infty$

Two options for MAP-z estimator instead of the joint MAP-x-z

- CSGM gradient descent, may be stuck in local minima
- ② Use Algorithm 2.3 to solve a series of joint MAP-*x*-*z* problems with increasing values of $\beta = \frac{1}{\gamma} \rightarrow \infty$ as suggested in Algorithm 1.1.

Stopping criterion: Inequality constrained problem

$$\underset{\mathbf{x},\mathbf{z}: \|\mathbf{G}(\mathbf{z})-\mathbf{x}\|^2 \leq \varepsilon}{\operatorname{arg min}} F(\mathbf{x},\mathbf{y}) + \frac{1}{2} \|\mathbf{z}\|^2.$$

The corresponding Lagrangian form is

2

$$\max_{\beta} \min_{\boldsymbol{x},\boldsymbol{z}} F(\boldsymbol{x},\boldsymbol{y}) + \frac{1}{2} \|\boldsymbol{z}\|^2 + \beta \left(\|\mathsf{G}(\boldsymbol{z}) - \boldsymbol{x}\|^2 - \varepsilon \right)^+ \qquad (6)$$

We use the exponential multiplier method (Tseng and Bertsekas, 1993) to guide the search for the optimal value of β (see Algorithm 2.4)

Variational AutoEncoder Priors Joint Posterior Maximization with AutoEncoding Prior Denoising Criterion and Continuation Scheme

MAP-z as the limit case for $\beta \to \infty$

Algorithm 2.4 MAP-z as the limit of joint MAP-x-z. **Require:** Measurements \boldsymbol{y} , Tolerance ε , Rate $\rho > 0$, Initial β_0 , Initial \boldsymbol{x}_0 , Iterations 0 < 0 $n_1 < n_2 < n_{\max}$ Ensure: $\operatorname{arg\,min}_{\boldsymbol{z}: \|\boldsymbol{\mathsf{G}}(\boldsymbol{z})-\boldsymbol{x}\|^2 < \varepsilon} F(\boldsymbol{x}, \boldsymbol{y}) + \frac{1}{2} \|\boldsymbol{z}\|^2.$ 1: $\beta := \beta_0$ 2: $\boldsymbol{x}^0, \boldsymbol{z}^0 :=$ Algorithm 2.3 starting from $\boldsymbol{x} = \boldsymbol{x}_0$ with $\beta, n_1, n_2, n_{\text{max}}$. 3: converged := FALSE $4 \cdot k := 0$ 5: while not converged do 6: $x^{k+1}, z^{k+1} :=$ Algorithm 2.3 starting from $x = x^k$ with β and $n_1 = n_2 = 0$ 7: $C = \|\mathbf{G}(\mathbf{z}^{k+1}) - \mathbf{x}^{k+1}\|^2 - \varepsilon$ 8: $\beta := \beta \exp(\rho C)$ 9: converged := (C < 0)10: k := k + 111. end while 12: return x^k, z^k

Variational AutoEncoder Priors Joint Posterior Maximization with AutoEncoding Prior Denoising Criterion and Continuation Scheme

MAP-z as the limit case for $\beta \to \infty$

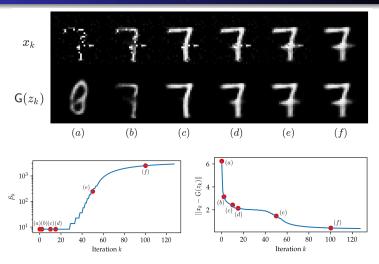
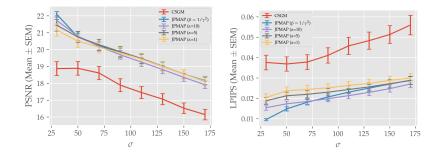


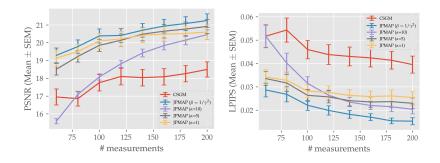
Figure 5. Evolution of Algorithm 2.4. In this inpainting example, JPMAP starts with the initialization in (a). During first iterations (b) – (d) where β_k is small, \boldsymbol{x}_k and $\boldsymbol{\mathsf{G}}(\boldsymbol{z}_k)$ start loosely approaching each other

25/36

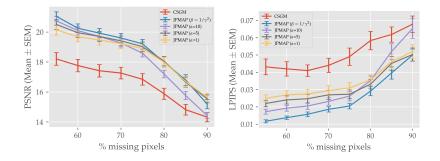
Denoising experiments (MNIST)



Compressed sensing experiments (MNIST)



Inpainting experiments (MNIST)



Denoising experiment: $\sigma = 110/255$

x^*	7	5	2	ન	O	4	Ч	9	3	S
y	Y	5	2.	4	Ø	su:	ų	9	3	8
CSGM	9	Э	а	3	0	З	9	9	8	в
JPMAP ($eta=1/\gamma^2$)	7	5	2	4	0	4	ч	9	3	8
JPMAP ($lpha=10$)	7	5	2	4	0	4	ч	9	3	8
JPMAP ($lpha=5$)	7	5	2	4	0	4	ч	9	3	8
JPMAP ($lpha=1$)	7	5	2	4	0	4	Ч	9	5	8

Proposed Method Experiments

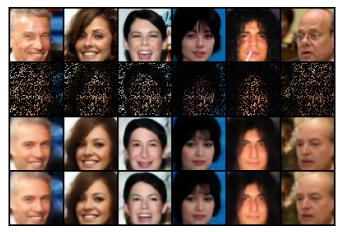
(

Compressed sensing experiment: m = 140 random measurements

Inpainting experiment: 80% missing pixels

x^*	O	Ч	5	8	/	4	З	9	8	4
y	47	1.4.1.1	45			ψ_{j}^{e}	1.8.7	24		2.4
CSGM	30	4	2	8	8	2	8	3	8	3
JPMAP ($eta=1/\gamma^2$)	0	4	5	8	1	4	З	9	8	4
JPMAP ($lpha=10$)	0	٩	5	8	1	9	3	9	8	4
JPMAP ($lpha=5$)	0	4	5	8	1	4	3	9	8	4
JPMAP ($lpha=1$)	0	Ч	5	8	1	4	З	9	8	4

Inpainting experiment: 80% missing pixels $\sigma = 10/255$ (CelebA)



From top to bottom: original image x^* , corrupted image \tilde{x} , restored by CSGM, restored image \hat{x} by our framework.

CelebA reconstructions $\mu_{ heta}(\mu_{\phi}(x))$

Reconstructions $\mu_{\theta}(\mu_{\phi}(\mathbf{x}))$ (even columns) for some test samples \mathbf{x} (odd columns), showing the over-regularization of data manifold imposed by the trained VAE. As a consequence, $-\log p_{Z|Y}(\mathbf{z} \mid \mathbf{y})$ does not have as many local minima and then a simple gradient solving Inverse Problems in Imaging

33/36

Conclusion

• JPMAP avoids spurious local minima thanks to

- Quasi bi-convex optimization
- Encoder initialization
- Denoising VAE
- Splitting and continuation scheme
- JPMAP converges for all quadratic problems and regularisation parameters (unlike denoiser-based PnP approaches (RYU ET AL., 2019) that are more restrictive)
- Constraints
 - Fixed size
 - VAEs lag behind GANs

Future work

- Use a more powerful VAE like NVAE (VAHDAT AND KAUTZ, 2020) or TwoStageVAE (DAI AND WIPF, 2019)
- Patch-based JPMAP (EPLL-like)
- Use ADMM with non-linear constraints instead of continuation scheme for MAP *z*
- Generalize the scheme to perform posterior sampling

Preprint and code available here http://up5.fr/jpmap

Thank you for your attention!

Questions? Comments

References

Arjovsky, Martin and Léon Bottou (2017). "Towards Principled Methods for Training Generative Adversarial Networks". In: *(ICLR) International Conference on Learning Representations*, pp. 1–17 (cit. on pp. 12–14).

Bora, Ashish, Ajil Jalal, Eric Price, and Alexandros G Dimakis (2017). "Compressed sensing using generative models". In: *(ICML) International Conference on Machine Learning*. Vol. 2. JMLR. org, pp. 537–546. ISBN: 9781510855144. arXiv:arXiv:1703.03208v1 (cit. on p. 15).

Chambolle, A (2004). "An algorithm for total variation minimization and applications". In: *Journal of Mathematical Imaging and Vision* 20, pp. 89–97. DOI: 10.1023/B:JMIV.0000011325.36760.1e (cit. on p. 5).

Goodfellow, Ian J., Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio (2014). "Generative Adversaria I Networks". In: *Advances in Neural Information Processing Systems 27*, pp. 2672–2680. ISSN: 10495258. arXiv: 1406.2661 (cit. on pp. 12–14, 18, 19).

Gorski, Jochen, Frank Pfeuffer, and Kathrin Klamroth (2007). "Biconvex sets and optimization with biconvex functions: a survey and extensions". In: *Mathematical Methods of Operations Research* 66.3, pp. 373–407. ISSN: 1432-2994. DOI: 10.1007/s00186-007-0161-1 (cit. on p. 24).

References

- Im, Daniel Jiwoong, Sungjin Ahn, Roland Memisevic, and Yoshua Bengio (2017). "Denoising criterion for variational auto-encoding framework". In: *31st AAAI Conference on Artificial Intelligence, AAAI 2017.* AAAI press, pp. 2059–2065. arXiv: 1511.06406 (cit. on pp. 31–33).
- Kingma, Diederik P and Max Welling (2013). "Auto-Encoding Variational Bayes". In: (ICLR) International Conference on Learning Representations. MI, pp. 1–14. ISBN: 1312.6114v10. DOI: 10.1051/0004-6361/201527329. arXiv: 1312.6114 (cit. on pp. 19–23, 31–33).
- Louchet, Cécile and Lionel Moisan (2013). "Posterior expectation of the total variation model: Properties and experiments". In: *SIAM Journal on Imaging Sciences* 6.4, pp. 2640–2684. ISSN: 19364954. DOI: 10.1137/120902276 (cit. on p. 5).
- Papamakarios, George, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan (2019). "Normalizing Flows for Probabilistic Modeling and Inference". In: arXiv: 1912.02762 (cit. on pp. 13, 14).
- Pereyra, Marcelo (2016). "Proximal Markov chain Monte Carlo algorithms". In: *Statistics and Computing* 26.4, pp. 745–760. ISSN: 0960-3174. DOI: 10.1007/s11222-015-9567-4. arXiv: 1306.0187 (cit. on p. 5).

Rudin, Leonid I., Stanley Osher, and Emad Fatemi (1992). "Nonlinear total variation based noise removal algorithms". In: *Physica D: Nonlinear Phenomena* 60.1-4, pp. 259–268. ISSN: 01672789. DOI: 10.1016/0167-2789(92)90242-F (cit. on p. 5).

References

Ryu, Ernest K., Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin (2019). "Plug-and-Play Methods Provably Converge with Properly Trained Denoisers". In: Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 5546–5557. arXiv: 1905.05406 (cit. on pp. 9, 11, 47).

Teodoro, Afonso M., José M. Bioucas-Dias, and Mário A. T. Figueiredo (2018). Scene-Adapted Plug-and-Play Algorithm with Guaranteed Convergence: Applications to Data Fusion in Imaging. arXiv: 1801.00605 (cit. on p. 5).

Tseng, Paul and Dimitri P. Bertsekas (1993). "On the convergence of the exponential multiplier method for convex programming". In: *Mathematical Programming* 60.1-3, pp. 1–19. ISSN: 00255610. DOI: 10.1007/BF01580598 (cit. on p. 36).

Vahdat, Arash and Jan Kautz (2020). "Nvae: A deep hierarchical variational autoencoder". In: *Advances in Neural Information Processing Systems* 33 (cit. on p. 48).

Yu, Guoshen, Guillermo Sapiro, and Stéphane Mallat (2011). "Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity". In: *IEEE Transactions on Image Processing* 21.5, pp. 2481–2499 (cit. on p. 5).

Zoran, Daniel and Yair Weiss (2011). "From learning models of natural image patches to whole image restoration". In: 2011 International Conference on

Computer Vision. IEEE, pp. 479–486. ISBN: 978-1-4577-1102-2. DOI: 10.1109/ICCV.2011.6126278 (cit. on p. 5).